首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies suggest that iron enters cardiomyocytes via the L-type voltage-gated calcium channel (VGCC). The neuronal VGCC may also provide iron entry. As with calcium, extraneous iron is associated with the pathology and progression of neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. VGCCs, ubiquitously expressed, may be an important route of excessive entry for both iron and calcium, contributing to cell toxicity or death. We evaluated the uptake of 45Ca2+ and 55Fe2+ into NGF-treated rat PC12, and murine N-2α cells. Iron not only competed with calcium for entry into these cells, but iron uptake (similar to calcium uptake) was inhibited by nimodipine, a specific L-type VGCC blocker, and enhanced by FPL 64176, an L-VGCC activator, in a dose-dependent manner. Taken together, these data suggest that voltage-gated calcium channels are an alternate route for iron entry into neuronal cells under conditions that promote cellular iron overload toxicity. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

2.
Voltage-gated Ca2+ channels (VGCCs) mediate the influx of Ca2+ that regulates many cellular events, and mutations in VGCC genes cause serious hereditary diseases in mammals. The yeast Saccharomyces cerevisiae has only one gene encoding the putative pore-forming alpha1 subunit of VGCC, CCH1. Here, we identify a cch1 allele producing a completely nonfunctional Cch1 protein with a Gly1265 to Glu substitution present in the domain III S2-S3 cytoplasmic linker. Comparison of amino acid sequences of this linker among 58 VGCC alpha1 subunits from 17 species reveals that a Gly residue whose position corresponds to that of the Cch1 Gly1265 is completely conserved from yeasts to humans. Systematic amino acid substitution analysis using 10 amino acids with different chemical and structural properties indicates that the Gly1265 is essential for Cch1 function because of the smallest residue volume. Replacement of the Gly959 residue of a rat brain Cav1.2 alpha1 subunit (rbCII), positionally corresponding to the yeast Cch1 Gly1265, with Glu, Ser, Lys, or Ala results in the loss of Ba2+ currents, as revealed by the patch clamp method. These results suggest that the Gly residue in the domain III S2-S3 linker is functionally indispensable from yeasts to mammals. Because the Gly residue has never been studied in any VGCC, these findings provide new insights into the structure-function relationships of VGCCs.  相似文献   

3.
The neuromodulatory effects of cannabinoids in the central nervous system have mainly been associated with G-protein coupled cannabinoid receptor (CB1R) mediated inhibition of voltage-gated calcium channels (VGCCs). Numerous studies show, however, that cannabinoids can also modulate VGCCs independent of CB1R activation. Nevertheless, despite the fact that endocannabinoids have a nearly equal efficacy for direct and CB1R-mediated effects on VGCC, the role of the direct cannabinoid–VGCC interaction has been largely underestimated.In this review, we summarize recent studies on the modulation of different types of VGCCs by cannabinoids, highlight the evidence for and implications of the CB1R-independent modulation, and put forward the concept, that direct interaction of cannabinoids and VGCCs is as important in regulation of VGCCs function as the CB1R-mediated effects.  相似文献   

4.
In addition to its primary role as a fundamental component of the SNARE complex, SNAP-25 also modulates voltage-gated calcium channels (VGCCs) in various overexpression systems. Although these studies suggest a potential negative regulatory role of SNAP-25 on VGCC activity, the effects of endogenous SNAP-25 on native VGCC function in neurons are unclear. In the present study, we investigated the VGCC properties of cultured glutamatergic and GABAergic rat hippocampal neurons. Glutamatergic currents were dominated by P/Q-type channels, whereas GABAergic cells had a dominant L-type component. Also, glutamatergic VGCC current densities were significantly lower with enhanced inactivation rates and shifts in the voltage dependence of activation and inactivation curves compared with GABAergic cells. Silencing endogenous SNAP-25 in glutamatergic neurons did not alter P/Q-type channel expression or localization but led to increased VGCC current density without changes in the VGCC subtype proportions. Isolation of the P/Q-type component indicated that increased current in the absence of SNAP-25 was correlated with a large depolarizing shift in the voltage dependence of inactivation. Overexpressing SNAP-25 in GABAergic neurons reduced current density without affecting the VGCC subtype proportion. Accordingly, VGCC current densities in glutamatergic neurons from Snap-25+/− mice were significantly elevated compared with wild type glutamatergic neurons. Overall, this study demonstrates that endogenous SNAP-25 negatively regulates native VGCCs in glutamatergic neurons which could have important implications for neurological diseases associated with altered SNAP-25 expression.  相似文献   

5.
Wang MC  Dolphin A  Kitmitto A 《FEBS letters》2004,564(3):245-250
L-type voltage-gated calcium channels (VGCCs) are multisubunit membrane proteins that regulate calcium influx into excitable cells. Within the last two years there have been four separate reports describing the structure of the skeletal muscle VGCC determined by electron microscopy and single particle analysis methods. There are some discrepancies between the structures, as well as reports for both monomeric and dimeric forms of the channel. This article considers each of the VGCC structures in terms of similarities and differences with an emphasis upon translation of data into a biological context.  相似文献   

6.
Zhu  Feng  Miao  Yunping  Cheng  Min  Ye  Xiaodi  Chen  Aiying  Zheng  Gaoli  Tian  Xuejun 《Neurochemical research》2022,47(2):249-263

Mutations in P/Q type voltage gated calcium channel (VGCC) lead severe human neurological diseases such as episodic ataxia 2, familial hemiplegic migraine 1, absence epilepsy, progressive ataxia and spinocerebellar ataxia 6. The pathogenesis of these diseases remains unclear. Mice with spontaneous mutation in the Cacna1a gene encoding the pore-forming subunit of P/Q type VGCC also exhibit ataxia, epilepsy and neurodegeneration. Based on the previous work showing that the P/Q type VGCC in neurons regulates lysosomal fusion through its calcium channel activity on lysosomes, we utilized CACNA1A mutant mice to further investigate the mechanism by which P/Q-type VGCCs regulate lysosomal function and neuronal homeostasis. We found CACNA1A mutant neurons have reduced lysosomal calcium storage without changing the resting calcium concentration in cytoplasm and the acidification of lysosomes. Immunohistochemistry and transmission electron microscopy reveal axonal degeneration due to lysosome dysfunction in the CACNA1A mutant cerebella. The calcium modulating drug thapsigargin, by depleting the ER calcium store, which locally increases the calcium concentration can alleviate the defective lysosomal fusion in mutant neurons. We propose a model that in cerebellar neurons, P/Q-type VGCC maintains the integrity of the nervous system by regulating lysosomal calcium homeostasis to affect lysosomal fusion, which in turn regulates multiple important cellular processes such as autophagy and endocytosis. This study helps us to better understand the pathogenesis of P/Q-type VGCC related neurodegenerative diseases and provides a feasible direction for future pharmacological treatment.

  相似文献   

7.
Hippocampal mossy fibers (MFs) innervate CA3 targets via anatomically distinct presynaptic elements: MF boutons (MFBs) innervate pyramidal cells (PYRs), whereas filopodial extensions (Fils) of MFBs innervate st. lucidum interneurons (SLINs). Surprisingly, the same high-frequency stimulation (HFS) protocol induces presynaptically expressed LTP and LTD at PYR and SLIN inputs, respectively. This differential distribution of plasticity indicates that neighboring, functionally divergent presynaptic elements along the same axon serve as autonomous computational elements capable of modifying release independently. Indeed we report that HFS persistently depresses voltage-gated calcium channel (VGCC) function in Fil terminals, leaving MFB VGCCs unchanged despite similar contributions of N- and P/Q-type VGCCs to transmission at each terminal. Selective Fil VGCC depression results from HFS-induced mGluR7 activation leading to persistent P/Q-type VGCC inhibition. Thus, mGluR7 localization to MF-SLIN terminals and not MFBs allows for MF-SLIN LTD expression via depressed presynaptic VGCC function, whereas MF-PYR plasticity proceeds independently of VGCC alterations.  相似文献   

8.
Oxaliplatin is important for treating colorectal cancer. Although oxaliplatin is highly effective, it has severe side effects, of which neurotoxicity in dorsal root ganglion (DRG) neurons is one of the most common. The key mechanisms of this neurotoxicity are still controversial. However, disturbances of calcium homeostasis in DRG neurons have been suggested to mediate oxaliplatin neurotoxicity. By using whole-cell patch-clamp and current-clamp techniques, as well as immunocytochemical staining, we examined the influence of short- and long-term exposure to oxaliplatin on voltage-gated calcium channels (VGCC) and different VGCC subtypes in small DRG neurons of rats in vitro. Exposure to oxaliplatin reduced VGCC currents (ICa(V)) in a concentration-dependent manner (1–500 μM; 13.8–63.3%). Subtype-specific measurements of VGCCs showed differential effects on ICa(V). While acute treatment with oxaliplatin led to a reduction in ICa(V) for P/Q-, T-, and L-type VGCCs, ICa(V) of N-type VGCCs was not affected. Exposure of DRG neurons to oxaliplatin (10 or 100 μM) for 24 h in vitro significantly increased the ICa(V) current density, with a significant influence on L- and T-type VGCCs. Immunostaining revealed an increase of L- and T-type VGCC protein levels in DRG neurons 24 h after oxaliplatin exposure. This effect was mediated by calcium-calmodulin-protein kinase II (CaMKII). Significant alterations in action potentials (AP) and their characteristics were also observed. While the amplitude increased after oxaliplatin treatment, the rise time and time-to-peak decreased, and these effects were reversed by treatment with pimozide and nimodipine, which suggests that VGCCs are critically involved in oxaliplatin-mediated neurotoxicity.  相似文献   

9.
Voltage-gated calcium channels (VGCCs) serve as a critical link between electrical signaling and diverse cellular processes in neurons. We have exploited recent advances in genetically encoded calcium sensors and in culture techniques to investigate how the VGCC alpha1 subunit EGL-19 and alpha2/delta subunit UNC-36 affect the functional properties of C. elegans mechanosensory neurons. Using the protein-based optical indicator cameleon, we recorded calcium transients from cultured mechanosensory neurons in response to transient depolarization. We observed that in these cultured cells, calcium transients induced by extracellular potassium were significantly reduced by a reduction-of-function mutation in egl-19 and significantly reduced by L-type calcium channel inhibitors; thus, a main source of touch neuron calcium transients appeared to be influx of extracellular calcium through L-type channels. Transients did not depend directly on intracellular calcium stores, although a store-independent 2-APB and gadolinium-sensitive calcium flux was detected. The transients were also significantly reduced by mutations in unc-36, which encodes the main neuronal alpha2/delta subunit in C. elegans. Interestingly, while egl-19 mutations resulted in similar reductions in calcium influx at all stimulus strengths, unc-36 mutations preferentially affected responses to smaller depolarizations. These experiments suggest a central role for EGL-19 and UNC-36 in excitability and functional activity of the mechanosensory neurons.  相似文献   

10.
The activity of some voltage-gated calcium channels (VGCCs) can be inhibited by specific G protein beta subunits. Conversely, in the case of N-type VGCCs, protein kinase C can relieve Gbeta-dependent inhibition by phosphorylating at least one specific site on the calcium channel. A recent publication describes a newly identified method of intracellular regulation of specific VGCCs. Wu et al. have uncovered that VGCC activity can be regulated by phosphatidylinositol-4',5'-bisphosphate (PIP2). Whereas PIP2 is important for maintaining the activity (open state) of Cav2.1 (N-type) and Cav2.2 (P/Q-type) channels, the enzymatic breakdown of PIP2 leads to the inactivation of these channels. Additionally, PIP2 can cause changes in voltage-dependent activation of Cav2.2 (P/Q-type) channels that make it more difficult for these channels to open (from the closed state). Furthermore, protein kinase A activity can circumvent PIP2-mediated inhibition. Thus, the PIP2-mediated regulation of VGCCs is tightly controlled by the functions of kinases (and phosphatases), as well as phospholipases. Wu et al. stress that because PIP2 can be found at synapses, PIP2-dependent control of VGCCs "could have profound consequences on synaptic transmission and plasticity."  相似文献   

11.
Voltage-gated calcium channels(VGCCs) play critical roles in cardiac and skeletal muscle contractions,hormone and neurotransmitter release,as well as slower processes such as cell proliferation,differentiation,migration and death.Mutations in VGCCs lead to numerous cardiac,muscle and neurological disease,and their physiological function is tightly regulated by kinases,phosphatases,G-proteins,calmodulin and many other proteins.Fifteen years ago,RGK proteins were discovered as the most potent endogenous regulators of VGCCs.They are a family of monomeric GTPases(Rad,Rem,Rem2,and Gem/Kir),in the superfamily of Ras GTPases,and they have two known functions: regulation of cytoskeletal dynamics including dendritic arborization and inhibition of VGCCs.Here we review the mechanisms and molecular determinants of RGK-mediated VGCC inhibition,the physiological impact of this inhibition,and recent evidence linking the two known RGK functions.  相似文献   

12.
13.
Voltage-gated calcium channels (VGCCs) convert electrical activity into calcium (Ca2+) signals that regulate cellular excitability, differentiation, and connectivity. The magnitude and kinetics of Ca2+ signals depend on the number of VGCCs at the plasma membrane, but little is known about the regulation of VGCC surface expression. We report that electrical activity causes internalization of the L-type Ca2+ channel (LTC) CaV1.2 and that this is mediated by binding to the tumor suppressor eIF3e/Int6 (eukaryotic initiation factor 3 subunit e). Using total internal reflection microscopy, we identify a population of CaV1.2 containing endosomes whose rapid trafficking is strongly regulated by Ca2+. We define a domain in the II-III loop of CaV1.2 that binds eIF3e and is essential for the activity dependence of both channel internalization and endosomal trafficking. These findings provide a mechanism for activity-dependent internalization and trafficking of CaV1.2 and provide a tantalizing link between Ca2+ homeostasis and a mammalian oncogene.  相似文献   

14.
The object of this study was to determine the effect of exposure to gamma radiation on potassium chloride (KCl)-stimulated release of dopamine (DA) in the striatum of the rat. In addition, the effect of some calcium channel blockers [nicardipine, a blocker of the L-type voltage-gated N-type VGCC; Omega-agatoxin TK, a selective blocker of P-type VGCC; and nickel chloride (NiCl(2)), which preferentially blocks the T-type VGCC] on KCl-stimulated release of DA in the striatum in sham-irradiated and irradiated rats was determined. Exposure of rats to 1-10 Gy (60)Co gamma rays had no significant effect on KCl-stimulated release of DA in the striatum in comparison to sham-irradiated animals. Administering 100, 300 and 500 nM of Omega-agatoxin TK or 50, 100 and 200 nM of Omega-conotoxin GVIA significantly decreased the release of DA stimulated by KCl in both irradiated and sham-irradiated animals in a dose-dependent manner. However, 10, 30 and 50 microM of nicardipine decreased the release of DA in irradiated animals but not in sham-irradiated animals. It is unknown why doses of 5-20 microM NiCl(2) had no effect on the release of DA in sham-irradiated and irradiated animals. The results demonstrate that the doses of radiation used in this study had no effect on release of DA in the striatum. Multiple calcium channel types coexist to regulate release of DA. P- and N-type VGCCs are involved in release of DA in sham-irradiated and irradiated animals, whereas only L-type VGCCs are involved in release of DA in irradiated animals.  相似文献   

15.

Introduction

We reported that ryanodine receptors are expressed in two different types of mammalian peripheral taste receptor cells: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs) and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located on internal calcium stores. In Type III cells that do have VGCCs and chemical synapses, ryanodine receptors contribute to the depolarization-dependent calcium influx.

Methodology/Principal Findings

The goal of this study was to establish if there was selectivity in the type of VGCC that is associated with the ryanodine receptor in the Type III taste cells or if the ryanodine receptor opens irrespective of the calcium channels involved. We also wished to determine if the ryanodine receptors and VGCCs require a physical linkage to interact or are simply functionally associated with each other. Using calcium imaging and pharmacological inhibitors, we found that ryanodine receptors are selectively associated with L type VGCCs but likely not through a physical linkage.

Conclusions/Significance

Taste cells are able to undergo calcium induced calcium release through ryanodine receptors to increase the initial calcium influx signal and provide a larger calcium response than would otherwise occur when L type channels are activated in Type III taste cells.  相似文献   

16.
SNAP-25 forms part of the SNARE core complex that mediates membrane fusion. Biochemical and electrophysiological evidence supports an accessory role for SNAP-25 in interacting with voltage-gated calcium channels (VGCCs) to modulate channel activity. We recently reported that endogenous SNAP-25 negatively regulates VGCC activity in glutamatergic neurons from rat hippocampal cultures by shifting the voltage-dependence of inactivation of the predominant P/Q-type channel current in these cells. In the present study, we extend these findings by investigating the effect that manipulating endogenous SNAP-25 expression has on the inactivation kinetics of VGCC current in both glutamatergic and GABAergic cells recorded from 9-13 DIV cultures. Silencing SNAP-25 in glutamatergic neurons significantly slowed the inactivation rate of P/Q-type VGCC current whereas alterations in SNAP-25 expression did not alter inactivation rates in GABAergic neurons. These results indicate that endogenous SNAP-25 plays an important role in P/Q-type channel regulation in glutamatergic neurons.  相似文献   

17.
SNAP-25 forms part of the SNARE core complex that mediates membrane fusion. Biochemical and electrophysiological evidence supports an accessory role for SNAP-25 in interacting with voltage-gated calcium channels (VGCCs) to modulate channel activity. We recently reported that endogenous SNAP-25 negatively regulates VGCC activity in glutamatergic neurons from rat hippocampal cultures by shifting the voltage-dependence of inactivation of the predominant P/Q-type channel current in these cells. In the present study, we extend these findings by investigating the effect that manipulating endogenous SNAP-25 expression has on the inactivation kinetics of VGCC current in both glutamatergic and GABAergic cells recorded from 9-13 DIV cultures. Silencing SNAP-25 in glutamatergic neurons significantly slowed the inactivation rate of P/Q-type VGCC current whereas alterations in SNAP-25 expression did not alter inactivation rates in GABAergic neurons. These results indicate that endogenous SNAP-25 plays an important role in P/Q-type channel regulation in glutamatergic neurons.  相似文献   

18.
Voltage-gated calcium channels (VGCCs) within sensory neurones are believed to perform an important role in neuropathic pain. In the present study we examine the changes in VGCC mRNA which occur following streptozocin- (STZ) induced diabetic neuropathy using in situ hybridization. STZ caused a significant increase in alpha(2)delta(1), alpha(2)delta(2), and alpha(2)delta(3) mRNA levels in all neuronal cell types. Similarly, mRNA levels of alpha(1F), alpha(1I), and alpha(1S) were increased in all cell types studied whilst alpha(1A) and alpha(1G) mRNAs were specifically upregulated in medium and large diameter neurones. In conclusion, we demonstrate that the induction of diabetic neuropathy is associated with dramatic changes in the expression of VGCCs.  相似文献   

19.
Many cellular functions are directly or indirectly regulated by the free cytosolic calcium concentration. Thus, calcium levels must be very tightly regulated in time and space. Intracellular calcium ions are essential second messengers and play a role in many functions including, action potential generation, neurotransmitter and hormone release, muscle contraction, neurite outgrowth, synaptogenesis, calcium-dependent gene expression, synaptic plasticity and cell death. Calcium ions that control cell activity can be supplied to the cell cytosol from two major sources: the extracellular space or intracellular stores. Voltage-gated and ligand-gated channels are the primary way in which Ca2+ ions enter from the extracellular space. The sarcoplasm reticulum (SR) in muscle and the endoplasmic reticulum in non-muscle cells are the main intracellular Ca2+ stores: the ryanodine receptor (RyR) and inositol-triphosphate receptor channels are the major contributors of calcium release from internal stores. Mutations of genes encoding calcium have been implicated in the etiology of a diverse group of nerve and muscle diseases. These mutations have been identified in humans, mice and other organisms. In this review, we will summarize calcium channelopathies of humans and mice. Of the ten calcium channel α1 subunits cloned and sequenced (see ref. 1), disease-causing mutations have been found in CaV1.4 and CaV2.1 in the nervous system, and CaV1.1 and CaV1.2 in muscle. Mutations in calcium channel auxiliary subunits (α2δ, β and γ) have also been associated with both human and/or mouse neurological diseases. The disease-causing mutations may provide new insight into the cell biological roles of calcium channels as well as into relationships between structure and function. In addition, understanding how the mutations affect the physiology of the cell could lead to advances in disease treatment by relieving symptoms or slowing the progression of the disease. However, due to the multifaceted functions of calcium in the cell, the correlation between molecular mutation, physiological alterations and disease etiology is neither straightforward nor easily understood. Since calcium is an important intracellular signaling molecule, altered calcium channel function can give rise to widespread changes in cellular function. Indeed, serious diseases result from mutations that cause trivial alterations of calcium currents analyzed in vitro.  相似文献   

20.
We have fabricated a topographical substrate with a packed polystyrene bead array for the development of cell‐based assay systems targeting voltage‐gated calcium channels (VGCCs). Human neural progenitor cells (H945RB.3) cultured on both flat and topographical substrates were analyzed in terms of morphological spreading, neuronal commitment, resting membrane potential (Vm) establishment and VGCC function development. We found, by SEM imaging, that arrayed substrates, formed with both sub‐micrometer (of 0.51 µm in mean diameter) and micrometer (of 1.98 µm in mean diameter) beads, were capable of promoting the spreading of the progenitor cells as compared with the flat polystyrene surfaces. With the micrometer beads, it was found that arrayed substrates facilitated the neural progenitor cells' maintenance of less negative Vm values upon differentiation with bFGF starvation, which favored predominant neuronal commitment. Almost all the progenitor cells were responsive to 50 mM K+ depolarization with an increase in [Ca2+]i either before or upon differentiation, suggesting the expression of functional VGCCs. Compared to the flat polystyrene surfaces, microbead arrayed substrates facilitated the development of higher VGCC responsiveness by the progenitor cells upon differentiation. The enhancement of both VGCC responsiveness and cell spreading by arrays of micrometer beads was most significant on day 14 into differentiation, which was the latest time point of measurement in this study. This study thus rationalized the possibility for future substrate topography engineering to manipulate ion channel function and to meet the challenge of low VGCC responsiveness found in early drug discovery. Biotechnol. Bioeng. 2010;106: 649–659. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号