首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The divergently transcribed DIT1 and DIT2 genes of Saccharomyces cerevisiae, which belong to the mid-late class of sporulation-specific genes, are subject to Ssn6-Tup1-mediated repression in mitotic cells. The Ssn6-Tup1 complex, which is required for repression of diverse sets of coordinately regulated genes, is known to be recruited to target genes by promoter-specific DNA-binding proteins. In this study, we show that a 42-bp negative regulatory element (NRE) present in the DIT1-DIT2 intergenic region consists of two distinct subsites and that a multimer of each subsite supports efficient Ssn6-Tup1-dependent repression of a CYC1-lacZ reporter gene. By genetic screening procedures, we identified DFG16, YGR122w, VPS36, and the DNA-binding proteins Rim101 and Nrg1 as potential mediators of NRE-directed repression. We show that Nrg1 and Rim101 bind simultaneously to adjacent target sites within the NRE in vitro and act as corepressors in vivo. We have found that the ability of Rim101 to be proteolytically processed to its active form and mediate NRE-directed repression not only depends on the previously characterized RIM signaling pathway but also requires Dfg16, Ygr122w, and components of the ESCRT trafficking pathway. Interestingly, Rim101 was processed in bro1 and doa4 strains but was unable to mediate efficient repression.  相似文献   

4.
The isolation and characterization of mutants has been crucial in understanding a number of processes in the field of cell biology. In this exercise, students examine the effects of mutations in the secretory pathway on protein localization. Yeast strains deficient for synthesis of histidinol dehydrogenase are transformed with a plasmid encoding a chimeric protein. The chimera contains a signal sequence fused to histidinol dehydrogenase. A strain with a defect in the translocation of secretory proteins into the endoplasmic reticulum (ER) accumulates sufficient histidinol dehydrogenase in the cytoplasm to grow on media lacking histidine. In contrast, yeast proficient for secretion, or yeast with secretion defects later in the pathway, are unable to grow on media lacking histidine. Student analysis of the experimental yeast transformants and appropriate controls allows investigation into the effects of conditional defects in the secretory pathway on both cell viability and protein localization. The exercise is usually performed in a manner that allows students to execute a number of techniques common in molecular biology laboratories, including plasmid minipreps, restriction digestions, and Southern blots. Student understanding and enjoyment of the exercise was assessed by laboratory reports, oral and written examinations, and questionnaires. After completion of these experiments, students can describe the utility of protein fusions, the roles of mutant analysis in cell biology, and the steps taken by proteins transiting the secretory pathway.  相似文献   

5.
6.
The biogenesis of mitochondria requires the integration of many proteins into the inner membrane from the matrix side. The inner membrane protein Oxa1 plays an important role in this process. We identified Mba1 as a second mitochondrial component that is required for efficient protein insertion. Like Oxa1, Mba1 specifically interacts both with mitochondrial translation products and with conservatively sorted, nuclear-encoded proteins during their integration into the inner membrane. Oxa1 and Mba1 overlap in function and substrate specificity, but both can act independently of each other. We conclude that Mba1 is part of the mitochondrial protein export machinery and represents the first component of a novel Oxa1-independent insertion pathway into the mitochondrial inner membrane.  相似文献   

7.
8.
《The Journal of cell biology》1992,117(5):1067-1076
Capping protein binds the barbed ends of actin filaments and nucleates actin filament assembly in vitro. We purified capping protein from Saccharomyces cervisiae. One of the two subunits is the product of the CAP2 gene, which we previously identified as the gene encoding the beta subunit of capping protein based on its sequence similarity to capping protein beta subunits in chicken and Dictyostelium (Amatruda, J. F., J. F. Cannon, K. Tatchell, C. Hug, and J. A. Cooper. 1990. Nature (Lond.) 344:352-354). Yeast capping protein has activity in critical concentration and low-shear viscometry assays consistent with barbed- end capping activity. Like chicken capping protein, yeast capping protein is inhibited by PIP2. By immunofluorescence microscopy yeast capping protein colocalizes with cortical actin spots at the site of bud emergence and at the tips of growing buds and shmoos. In contrast, capping protein does not colocalize with actin cables or with actin rings at the site of cytokinesis.  相似文献   

9.
10.
Kss1 protein kinase, and the homologous Fus3 kinase, are required for pheromone signal transduction in Saccharomyces cerevisiae. In MATa haploids exposed to alpha-factor, Kss1 was rapidly phosphorylated on both Thr183 and Tyr185, and both sites were required for Kss1 function in vivo. De novo protein synthesis was required for sustained pheromone-induced phosphorylation of Kss1. Catalytically inactive Kss1 mutants displayed alpha-factor-induced phosphorylation on both residues, even in kss1 delta cells; hence, autophosphorylation is not obligatory for these modifications. In kss1 delta fus3 delta double mutants, Kss1 phosphorylation was elevated even in the absence of pheromone; thus, cross-phosphorylation by Fus3 is not responsible for Kss1 activation. In contrast, pheromone-induced Kss1 phosphorylation was eliminated in mutants deficient in two other protein kinases, Ste11 and Ste7. A dominant hyperactive allele of STE11 caused a dramatic increase in the phosphorylation of Kss1, even in the absence of pheromone stimulation, but required Ste7 for this effect, suggesting an order of function: Ste11-->Ste7-->Kss1. When overproduced, Kss1 stimulated recovery from pheromone-imposed G1 arrest. Catalytic activity was essential for Kss1 function in signal transmission, but not for its recovery-promoting activity. Kss1 was found almost exclusively in the particulate material and its subcellular fractionation was unaffected by pheromone treatment. Indirect immunofluorescence demonstrated that Kss1 is concentrated in the nucleus and that its distribution is not altered detectably during signaling.  相似文献   

11.
12.
The yeast protein Ccz1p is necessary for vacuolar protein trafficking and biogenesis. In a complex with Mon1p, it mediates fusion of transport intermediates with the vacuole membrane by activating the small GTPase Ypt7p. Additionally, genetic data suggest a role of Ccz1p in earlier transport steps, in the Golgi. In a search for further proteins interacting with Ccz1p, we identified the endosomal soluble N -ethylmaleimide-sensitive factor attachment protein receptor Pep12p as an interaction partner of Ccz1p. Combining the ccz1 Δ mutation with deletions of PEP12 or other genes encoding components of the endosomal fusion machinery, VPS21, VPS9 or VPS45 , results in synthetic growth phenotypes. The genes MON1 and YPT7 also interact genetically with PEP12 . These results suggest that the Ccz1p–Mon1p–Ypt7p complex is involved in fusion of transport vesicles to multiple target membranes in yeast cells.  相似文献   

13.
14.
15.
Nikko E  André B 《Eukaryotic cell》2007,6(8):1266-1277
Targeting of membrane proteins into the lysosomal/vacuolar lumen for degradation requires their prior sorting into multivesicular bodies (MVB). The MVB sorting pathway depends on ESCRT-0, -I, -II, and -III protein complexes functioning on the endosomal membrane and on additional factors, such as Bro1/Alix and the ubiquitin ligase Rsp5/Nedd4. We used the split-ubiquitin two-hybrid assay to analyze the interaction partners of yeast Bro1 at its natural cellular location. We show that Bro1 interacts with ESCRT-I and -III components, including Vps23, the Saccharomyces cerevisiae homologue of human Tsg101. These interactions do not require the C-terminal proline-rich domain (PRD) of Bro1. Rather, this PRD interacts with the Doa4 deubiquitinating enzyme to recruit it to the endosome. This interaction is disrupted by a single amino acid substitution in the conserved ELC box motif in Doa4. The PRD of Bro1 also mediates an association with Rsp5, and this interaction appears to be conserved, as Alix, the human homologue of Bro1, coimmunoprecipitates with Nedd4 in yeast lysates. We further show that the Bro1 PRD domain is essential to MVB sorting of only cargo proteins whose sorting to the vacuolar lumen is dependent on their own ubiquitination and Doa4. The Bro1 region preceding the PRD, however, is required for MVB sorting of proteins irrespective of whether their targeting to the vacuole is dependent on their ubiquitination and Doa4. Our data indicate that Bro1 interacts with several ESCRT components and contributes via its PRD to associating ubiquitinating and deubiquitinating enzymes with the MVB sorting machinery.  相似文献   

16.
17.
Protein phosphatase type I (PP1), encoded by the single essential gene GLC7 in Saccharomyces cerevisiae, functions in diverse cellular processes. To identify in vivo subcellular location(s) where these processes take place, we used a functional green fluorescent protein (GFP)-Glc7p fusion protein. Time-lapse fluorescence microscopy revealed GFP-Glc7p localizes predominantly in the nucleus throughout the mitotic cell cycle, with the highest concentrations in the nucleolus. GFP-Glc7p was also observed in a ring at the bud neck, which was dependent upon functional septins. Supporting a role for Glc7p in bud site selection, a glc7-129 mutant displayed a random budding pattern. In alpha-factor treated cells, GFP-Glc7p was located at the base of mating projections, again in a septin-dependent manner. At the start of anaphase, GFP-Glc7p accumulated at the spindle pole bodies and remained there until cytokinesis. After anaphase, GFP-Glc7p became concentrated in a ring that colocalized with the actomyosin ring. A GFP-Glc7-129 fusion was defective in localizing to the bud neck and SPBs. Together, these results identify sites of Glc7p function and suggest Glc7p activity is regulated through dynamic changes in its location.  相似文献   

18.
19.
We investigated the relationship in Saccharomyces cerevisiae between the cell cycle start function, CDC25, and two mutants defining components of the cAMP pathway. The thermolabile adenylate cyclase mutant cyr1-2(ts) is phenotypically similar to the temperature-sensitive mutant cdc25(ts) in that both mutants, when shifted to the restrictive temperature, arrest in G1 of the cell cycle and permit the initiation of meiosis and sporulation. The mutant bcy1 [a lesion resulting in a low level of regulatory (R) subunit and a high level of active, catalytic (C) subunit of the cAMP-dependent protein kinase] suppresses the temperature-sensitive phenotype of cyr1-2(ts) and confers an asporogenous phenotype. We found that cdc25(ts) complemented cyr1-2(ts), and, unlike cyr1-2(ts), was not suppressible by bcy1, demonstrating that CYR1 and CDC25 must encode different functions. Also our results indicate that CDC25 does not encode the R subunit of the cAMP-dependent protein kinase. In addition, although the cdc25(ts)bcy1 double mutant was temperature sensitive like cdc25(ts), we found that the cdc25(ts)bcy1 homozygous diploid was asporogenous like bcy1/bcy1. The inability of the cdc25(ts)bcy1 double mutant to sporulate demonstrated that CDC25 does not encode the C subunit of the cAMP kinase, and indicated that the CDC25 function modulates the cAMP pathway to control meiosis and sporulation. Further, the temperature-sensitive phenotype of the double mutant, and hence the inability of bcy1 to suppress cdc25(ts), suggested that a second CDC25 cell cycle function exists which is independent of the cAMP pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for normal growth and division of yeast cells. We report here the isolation of the yeast MKK1 and MKK2 (for mitogen-activated protein [MAP] kinase-kinase) genes which, when overexpressed, suppress the cell lysis defect of a temperature-sensitive pkc1 mutant. The MKK genes encode protein kinases most similar to the STE7 product of S. cerevisiae, the byr1 product of Schizosaccharomyces pombe, and vertebrate MAP kinase-kinases. Deletion of either MKK gene alone did not cause any apparent phenotypic defects, but deletion of both MKK1 and MKK2 resulted in a temperature-sensitive cell lysis defect that was suppressed by osmotic stabilizers. This phenotypic defect is similar to that associated with deletion of the BCK1 gene, which is thought to function in the pathway mediated by PCK1. The BCK1 gene also encodes a predicted protein kinase. Overexpression of MKK1 suppressed the growth defect caused by deletion of BCK1, whereas an activated allele of BCK1 (BCK1-20) did not suppress the defect of the mkk1 mkk2 double disruption. Furthermore, overexpression of MPK1, which encodes a protein kinase closely related to vertebrate MAP kinases, suppressed the defect of the mkk1 mkk2 double mutant. These results suggest that MKK1 and MKK2 function in a signal transduction pathway involving the protein kinases encoded by PKC1, BCK1, and MPK1. Genetic epistasis experiments indicated that the site of action for MKK1 and MKK2 is between BCK1 and MPK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号