首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9 (GDF-9) are members of the transforming growth factor-beta superfamily. Both molecules are closely related in their primary structures and share a nearly identical spatiotemporal expression pattern in the oocyte during folliculogenesis in mammals. Here we have established a series of cell lines, which express recombinant BMP-15, GDF-9, or both, and investigated whether they form homodimers and/or heterodimers. We demonstrate the first evidence that both BMP-15 and GDF-9 can form non-covalent homodimers when expressed individually, while when both are co-expressed BMP-15/GDF-9 heterodimers are produced. Interestingly, when GDF-9 and BMP-15 are co-expressed the processing of both proproteins are significantly impaired as compared with that of the singly expressed proproteins, suggesting that the proprotein heterodimer is less susceptible to proteolytic cleavage than the individual homodimers. Since BMP-15 mutant sheep, called Inverdale, exhibit severe defects in ovarian function we have also established stable transformants expressing the mutant BMP-15 (InvBMP-15) alone or together with GDF-9. Although InvBMP-15 was previously predicted to be unable to form homodimers, we show here that it does form non-covalent dimers; however, the processing efficiency of InvBMP-15 proprotein is significantly lower than wild-type BMP-15. Surprisingly, when GDF-9 is co-expressed, the processing and secretion of InvBMP-15 is abolished, and the processing of GDF-9 is also severely impaired, suggesting that the heterodimers of InvBMP-15/GDF-9 proproteins are not susceptible to proteolytic cleavage and thus degrade in the cells. Based on these findings we propose a novel hypothesis that a decrease in GDF-9 secretion may be involved in causing infertility in homozygous Inverdale ewes.  相似文献   

2.
Integral role of GDF-9 and BMP-15 in ovarian function   总被引:1,自引:0,他引:1  
The oocyte plays an important role in regulating and promoting follicle growth, and thereby its own development, by the production of oocyte growth factors that predominantly act on supporting granulosa cells via paracrine signaling. Genetic studies in mice demonstrated critical roles of two key oocyte-derived growth factors belonging to the transforming growth factor-β (TGF-β) superfamily, growth and differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15), in ovarian function. The identification of Bmp15 and Gdf9 gene mutations as the causal mechanism underlying the highly prolific or infertile nature of several sheep strains in a dosage-sensitive manner also highlighted the crucial role these two genes play in ovarian function. Similarly, large numbers of mutations in the GDF9 and BMP15 genes have been identified in women with premature ovarian failure and in mothers of dizygotic twins. The purpose of this article is to review the genetic studies of GDF-9 and BMP-15 mutations identified in women and sheep, as well as describing the various knockout and overexpressing mouse models, and to summarize the molecular and biological functions that underlie the crucial role of these two oocyte factors in female fertility.  相似文献   

3.
绵羊存在影响多胎性状的不同主效基因,选择影响Romney Hanna绵羊和Cambridge绵羊高繁殖力的骨形态发生蛋白15 (bone morphogenetic protein 15, BMP15)为候选基因,采用PCR-SSCP的方法检测BMP15基因外显子Ⅱ第747位点(T747→C)和755位点(T755→C)在蒙古羊、甘肃高山细毛羊、小尾寒羊三种绵羊母羊中的多态性,同时还研究了上述两处突变对三种绵羊产羔数的影响。表明:(1)一共检测到野生纯合型AA、突变杂合型AB (T747→C)、AC (T755→C)三种不同的基因型,AA为优势基因型,A为优势等位基因;(2)三种基因型在甘肃高山细毛羊中均被检测到,而蒙古羊和小尾寒羊中未检测出AB基因型;(3)突变杂合型蒙古羊(AC)比野生纯合型(AA)的平均产羔数多0.27只(p<0.05)。(4)AC的基因型频率,双羔母羊和多羔母羊均高于单羔母羊。根据以上实验推测,BMP15第755位点发生的T→C突变(AC型)对蒙古羊一胎产双羔影响十分显著,甘肃高山细毛羊中AC基因型的绵羊其产羔数有比AA基因型和AB基因型多的趋势,因此该位点可能是一个影响绵羊高繁殖力潜在的DNA标记。  相似文献   

4.
Wang JQ  Cao WG 《遗传》2011,33(9):953-961
绵羊存在影响多胎性状的主效基因。BMPR-IB的突变体FecB对排卵数的增加具有增强效应,GDF-9的突变体FecGH和FecI及BMP-15的突变体FecXI、FecXH、FecXG、FecXB、FecXL和FecXR均为纯合子不育,杂合子增加排卵数,而GDF-9的突变体FecGE只有纯合子增加排卵数。Woodlands和Lacaune是遗传方式已知的多胎主效基因。Woodlands是与X染色体连锁的母系印迹基因,Lacaune与FecB类似对排卵数的增加具有增强效应。主效基因突变体单拷贝增加排卵数的效应具有差异性,FecB和FecXL的效应最高可增加1.5个,Woodlands最低可增加0.4个。研究绵羊多胎性状主效基因不仅有助于家畜的选种选育,提高绵羊繁殖力,而且为研究哺乳动物的繁殖机制开拓了新的方向。文章综述了绵羊多胎主效基因的来源、定位、表型、作用机制以及我国绵羊品种多胎主效基因的研究现状,旨在为深入研究绵羊多胎主效基因的作用机制及为绵羊多胎品种的选育提供参考。  相似文献   

5.
Belclare and Cambridge are prolific sheep breeds, the origins of which involved selecting ewes with exceptionally high litter size records from commercial flocks. The variation in ovulation rate in both breeds is consistent with segregation of a gene (or genes) with a large effect on this trait. Sterile ewes, due to a failure of normal ovarian follicle development, occur in both breeds. New naturally occurring mutations in genes for the oocyte-derived growth factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are described. These mutations are associated with increased ovulation rate in heterozygous carriers and sterility in homozygous carriers in both breeds. This is the first time that a mutation in the gene for GDF9 has been found that causes increased ovulation rate and infertility in a manner similar to inactivating mutations in BMP15, and shows that GDF9 is essential for normal folliculogenesis in sheep. Furthermore, it is shown, for the first time in any species, that individuals with mutations in both GDF9 and BMP15 have a greater ovulation rate than sheep with either of the mutations separately.  相似文献   

6.
Knockout mouse technology has been used over the last decade to define the essential roles of ovarian-expressed genes and uncover genetic interactions. In particular, we have used this technology to study the function of multiple members of the transforming growth factor-beta superfamily including inhibins, activins, and growth differentiation factor 9 (GDF-9 or Gdf9). Knockout mice lacking GDF-9 are infertile due to a block in folliculogenesis at the primary follicle stage. In addition, recombinant GDF-9 regulates multiple cumulus granulosa cell functions in the periovulatory period including hyaluronic acid synthesis and cumulus expansion. We have also cloned an oocyte-specific homolog of GDF-9 from mice and humans, which is termed bone morphogenetic protein 15 (BMP-15 or Bmp15). To define the function of BMP-15 in mice, we generated embryonic stem cells and knockout mice, which have a null mutation in this X-linked gene. Male chimeric and Bmp15 null mice are normal and fertile. In contrast to Bmp15 null males and Gdf9 knockout females, Bmp15 null females (Bmp15(-/-)) are subfertile and usually have minimal ovarian histopathological defects, but demonstrate decreased ovulation and fertilization rates. To further decipher possible direct or indirect genetic interactions between GDF-9 and BMP-15, we have generated double mutant mice lacking one or both alleles of these related homologs. Double homozygote females (Bmp15(-/-)Gdf9(-/-)) display oocyte loss and cysts and resemble Gdf9(-/-) mutants. In contrast, Bmp15(-/-)Gdf9(+/-) female mice have more severe fertility defects than Bmp15(-/-) females, which appear to be due to abnormalities in ovarian folliculogenesis, cumulus cell physiology, and fertilization. Thus, the dosage of intact Bmp15 and Gdf9 alleles directly influences the destiny of the oocyte during folliculogenesis and in the periovulatory period. These studies have important implications for human fertility control and the maintenance of fertility and normal ovarian physiology.  相似文献   

7.
The present study was designed for screening polymorphism of known fecundity genes in prolific Indian Bonpala sheep. Employing tetra-primer amplification refractory mutation system PCR, 11-point mutations of BMP1B, BMP15, and GDF9 genes of 97 Bonpala ewes were genotyped. The FecB locus of the BMPR1B gene and two loci (G1 and G4) of GDF9 gene were found to be polymorphic. In FecB locus, three genotypes, namely, wild type (Fec++, 0.02), heterozygous (FecB+, 0.23), and mutant (FecBB, 0.75) were detected. At G1 locus of GDF9 gene, three genotypes, namely, wild type (GG, 0.89), heterozygous (GA, 0.10), and mutant (AA, 0.01) were detected. At G4 locus of GDF9 gene, three genotypes, namely, wild type (AA, 0.01), heterozygous (AG, 0.14), and mutant (GG, 0.85) were detected. Statistically no significant correlation of polymorphism of FecB, G1, and G4 loci and litter size was found in this breed. All five loci of BMP15 and three loci of GDF 9 genes were monomorphic. This study reports Bonpala sheep as the first sheep breed where concurrent polymorphism at three important loci (FecB, G1, and G4) of two different fecundity genes (BMPR1B and GDF9) has been found.  相似文献   

8.
Woodlands sheep have a putative genetic mutation (FecX2(W)) that increases ovulation rate. At present, the identity of FecX2(W) is unknown. The trait does not appear to be due to the previously described mutations in bone morphogenetic protein 15 (BMP15), growth differentiation factor 9 (GDF9), or bone morphogenetic protein receptor type 1B (BMPR1B) that affect ovulation rate in sheep. Potentially, FecX2(W) could be an unidentified genetic mutation in BMP15 or in the closely related GDF9, which interacts with BMP15 to control ovarian function. Alternatively, FecX2(W) may affect ovulation rate by changing the expression patterns in the molecular pathways activated by genes known to regulate ovulation rate. The objectives of these experiments were to sequence the complete coding region of the BMP15 and GDF9 genes, determine the patterns of expression of mRNAs encoding GDF9, BMP15, TGFBR1, BMPR1B, and BMPR2 during follicular development, and characterize the follicular populations in ewes heterozygous for the Woodlands mutation and their wild-type contemporaries. No differences in the coding sequences of BMP15 or GDF9 genes were identified that were associated with enhanced ovulation rate. The expression patterns of GDF9 and BMPR2 mRNAs were not different between genotypes. However, expression of BMP15 mRNA was less in oocytes of FecX2(W) ewes in large preantral and antral follicles. Expression of ALK5 mRNA was significantly higher in the oocytes of FecX2(W) ewes, whereas expression of BMPR1B was decreased in both oocytes and granulosa cells of FecX2(W) ewes. FecX2(W) ewes also had increased numbers of antral follicles <1 mm in diameter. These follicles were smaller in average diameter, with the oocytes also being of a smaller mean diameter. Given that a mutation in BMP15 or BMPR1B results in increased ovulation rates in sheep, the differences in expression levels of BMP15 and BMPR1B may play a role in the increase in ovulation rate observed in Woodlands ewes with the FecX2(W) mutation.  相似文献   

9.
To determine the function of germ cell nuclear factor (GCNF) in female reproduction, we generated an oocyte-specific GCNF knockout mouse model (GCNF(fl/fl)Zp3Cre(+)). These mice displayed hypofertility due to prolonged diestrus phase of the estrous cycle and aberrant steroidogenesis. These reproductive defects were secondary to a primary defect in the oocytes, in which expression of the paracrine transforming growth factor-beta signaling molecules, bone morphogenetic protein 15 (BMP-15) and growth differentiation factor 9 (GDF-9), were up-regulated in GCNF(fl/fl)Zp3Cre(+) females at diestrus. This was a direct effect of GCNF, as molecular studies showed that GCNF bound to DR0 elements within the BMP-15 and GDF-9 gene promoters and repressed their reporter activities. Consistent with these findings, abnormal double-oocyte follicles, indicative of aberrant BMP-15/GDF-9 expression, were observed in GCNF(fl/fl)Zp3Cre(+) females. The Cre/loxP knockout of GCNF in the oocyte has uncovered a new regulatory pathway in ovarian function. Our results show that GCNF directly regulates paracrine communication between the oocyte and somatic cells by regulating the expression of BMP-15 and GDF-9, to affect female fertility.  相似文献   

10.
Mating experiments are described for sheep with three different Robertsonian translocations in the single heterozygous t1, t2 and t3, homozygous t1t1 and t3t3 and double heterozygous t1t2 and t1t3 state. The experiments were designed to investigate several previously reported unusual chromosome segregation ratios in sheep, to test the fertility of translocation heterozygous ewes mated to rams of normal karyotype and to test both the fertility and segregation patterns of sheep which were double translocation heterozygotes. The fertility of the translocation heterozygous ewes was normal as assessed from conception to first service, numbers of non-conceiving ewes and lambing percentages. Two types of double translocation heterozygous rams mated to ewes of normal karyotype produced regular chromosome segregation patterns in their progeny and the matings were of normal fertility. Double translocation heterozygous ewes were also fertile. Four sheep were bred with 51 chromosomes. Two of these were triple heterozygotes with three different Robertsonian translocations 51,xy,t1t2t3 and 51,xx,t1t2t3 and two were homozygous for one translocation and heterozygous for the others, namely 51,xx,t1t2t3 and 51,xxt1t3t3. All sheep were phenotypically normal. It is concluded that the t1,t2 and t3 Robertsonian translocations of sheep do not affect reproductive performance significantly.  相似文献   

11.
The synergetic process of folliculogenesis is mainly regulated by GDF-9 and BMP-15 as well as their receptors, such as BMPR2, TβR1 and BMPR1B. Expressions of these factors and the receptors are significant different among species. This study was designed to detect expression of GDF-9, BMP-15 and their receptors in mouse, porcine and human healthy follicles by immunohistochemistry. Three ages of human ovary were studied according to ovarian developmental schedule, i.e. gestational week (GW) 16, puberty (14 year-old) and adult (40 year-old). The results showed that both GDF-9 and BMP-15 were detectable in oocytes from primary follicles onward, besides, BMP-15 also presented in granulosa cells (GCs) and follicular follicle of mature follicles in mouse. However, they were maintained in oocytes and GCs from primordial to mature follicles in porcine except that GDF-9 was undetectable in GCs of mature follicles. For human ovary, GDF-9 presented in oocytes of primordial follicles in all samples, whereas BMP-15 was only observed in primordial follicle of adult ovary. Receptors, BMPR2, TβR1 and BMPR1B were found in oocytes and GCs of all follicles in mouse and porcine. In human, they were stained in oocytes from primordial follices but BMPR1B was not expressed in pubertal primordial follicles. Furthermore, we found that GDF-9, BMP-15 and three receptors distributed in adult corpus lutea. Collectively, our studies suggested that GDF-9, BMP-15 and their receptors might correlate with primordial follicular recruitment in pig and human. Positive expression of the receptors (BMPR2, TβR1 and BMPR1B)in primordial follicles of mouse ovaries indicated that these receptors might interact with others ligands besides GDF-9 and BMP-15 to regulate primordial follicular activity in mouse. Moreover, presence of GDF-9 in oocytes and BMP-15 in oocytes and GCs of mature follicles from mice and porcine elucidated coordinated roles of GDF-9 and BMP-15 in cumulus oophorus expansion. Additionally, expression of these factors in adult human corpus lutea suggested they play roles in corpus luteum activity.  相似文献   

12.
The process of ovarian folliculogenesis is composed of proliferation and differentiation of the constitutive cells in developing follicles. Growth factors emitted by oocytes integrate and promote this process. Growth differentiation factor-9 (GDF-9), bone morphogenetic protein (BMP)-15, and BMP-6 are oocyte-derived members of the transforming growth factor-beta superfamily. In contrast to the recent studies on GDF-9 and BMP-15, nothing is known about the biological function of BMP-6 in the ovary. Here we show that, unlike BMP-15 and GDF-9, BMP-6 lacks mitogenic activity on rat granulosa cells (GCs) and produces a marked decrease in follicle-stimulating hormone (FSH)-induced progesterone (P(4)) but not estradiol (E(2)) production, demonstrating not only the first identification of GCs as BMP-6 targets in the ovary but also its selective modulation of FSH action in steroidogenesis. This BMP-6 activity resembles BMP-15 but differs from GDF-9 activities. BMP-6 also exhibited similar action to BMP-15 by attenuating the steady state mRNA levels of FSH-induced steroidogenic acute regulatory protein (StAR) and P450 side-chain cleavage enzyme (P450scc), without affecting P450 aromatase mRNA level, supporting its differential function on FSH-regulated P(4) and E(2) production. However, unlike BMP-15, BMP-6 inhibited forskolin- but not 8-bromo-cAMP-induced P(4) production and StAR and P450scc mRNA expression. BMP-6 also decreased FSH- and forskolin-stimulated cAMP production, suggesting that the underlying mechanism by which BMP-6 inhibits FSH action most likely involves the down-regulation of adenylate cyclase activity. This is clearly distinct from the mechanism of BMP-15 action, which causes the suppression of basal FSH receptor (FSH-R) expression, without affecting adenylate cyclase activity. As assumed, BMP-6 did not alter basal FSH-R mRNA levels, whereas it inhibited FSH- and forskolin- but not 8-bromo-cAMP-induced FSH-R mRNA accumulation. These studies provide the first insight into the biological function of BMP-6 in the ovary and demonstrate its unique mechanism of regulating FSH action.  相似文献   

13.
GDF9 as a candidate gene for prolificacy of Small Tail Han sheep   总被引:2,自引:0,他引:2  
Chu MX  Yang J  Feng T  Cao GL  Fang L  Di R  Huang DW  Tang QQ  Ma YH  Li K  Li N 《Molecular biology reports》2011,38(8):5199-5204
Growth differentiation factor 9 (GDF9) which controls the fecundity of Belclare, Cambridge, Santa Ines, Moghani, Ghezel and Thoka ewes was studied as a candidate gene for the prolificacy of Small Tail Han sheep. According to the sequence of ovine GDF9 gene, six pairs of primers were designed to detect single nucleotide polymorphisms of two exons of GDF9 gene in both high fecundity breed (Small Tail Han sheep) and low fecundity breed (Dorset sheep) by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Only the products amplified by primers 2-1 and 2-2 displayed polymorphisms. For primer 2-1, three genotypes (AA, AB and BB) were detected in both sheep breeds. Sequencing revealed one silent mutation (G477A) in exon 2 of GDF9 gene in the BB genotype in comparison with the AA, which was known as G3 mutation of GDF9 gene in Belclare and Cambridge ewes. The relationship of least squares means for litter size was AA?>?AB?>?BB in Small Tail Han sheep (P?>?0.05). For primer 2-2, two genotypes (CC and CD) were detected in both sheep breeds. Sequencing revealed one novel single nucleotide mutation (G729T) in exon 2 of GDF9 gene in the CD genotype in comparison with the CC, which resulted in an amino acid change (Gln243His). The ewes with mutation heterozygous genotype CD had 0.77 (P?相似文献   

14.
目的观察BMP-6及GDF-9蛋白在小鼠体外培养卵泡中的定位和定量表达,探讨二者与卵泡发育的关系。方法采用免疫荧光和western blot技术观察BMP-6及GDF-9在体外培养的第6、10天卵泡的定位和定量表达情况。结果在体外培养中,腔前卵泡和有腔卵泡的卵母细胞和颗粒细胞中均检测到BMP-6和GDF-9蛋白的表达;western blot定量显示,在卵泡体外发育的不同阶段,BMP-6和GDF-9蛋白的表达水平不同。结论 BMP-6及GDF-9蛋白存在于体外培养卵泡的卵母细胞和颗粒细胞中;二者的表达水平随卵泡的发育成熟而发生变化。  相似文献   

15.
Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor beta superfamily, is specifically expressed in oocytes and is essential for sheep prolificacy. Reported mutations in this gene cause increased ovulation rate and infertility in a dosage-sensitive manner. In this work, a new naturally occurring mutation in the BMP15 gene from the ovine Rasa Aragonesa breed is described. This mutation is a deletion of 17 bp that leads to an altered amino acid sequence and introduces a premature stop codon in the protein. Highly significant associations (P < 0.0001) were found between the estimated breeding value for prolificacy and the genotype of BMP15 in Rasa Aragonesa animals with high and low breeding values for this trait. As for other mutations in BMP15, this new mutation is associated with increased prolificacy and sterility in heterozygous and homozygous ewes respectively.  相似文献   

16.
Ovarian folliculogenesis in mammals from the constitution of primordial follicles up to ovulation is a reasonably well understood mechanism. Nevertheless, underlying mechanisms that determine the number of ovulating follicles were enigmatic until the identification of the fecundity genes affecting ovulation rate in sheep, bone morphogenetic protein-15 (BMP-15), growth and differentiation factor-9 (GDF-9) and BMP receptor-1B (BMPR-1B). In this review, we focus on the use of these sheep genetic models for understanding the role of the BMP system as an intra-ovarian regulator of follicular growth and maturation, and finally, ovulation rate.  相似文献   

17.
Abnormal follicular and oocyte growth in ovaries of sheep homozygous (II) for the Inverdale gene, FecX(I), suggest that this gene may influence a fundamental event in initiation of folliculogenesis, with two copies of the gene inhibiting growth at the primordial/primary stage. In addition, striking similarities in ovarian morphology between mice deficient in growth and differentiation factor-9 (GDF-9) and II sheep suggest a relationship between the FecX(I) gene and GDF-9 function in the ovary. Therefore, it was hypothesized that GDF-9 mRNA expression would be inhibited in ovaries of II fetal sheep. To test this hypothesis, in situ hybridization was used to characterize GDF-9 mRNA expression in ovaries of homozygous (II), heterozygous (I+), and control (++) fetal sheep at Day 135 of gestation. GDF-9 mRNA expression was localized exclusively to oocytes from the type 1 follicle stage onward in all genotypes and is the first demonstration of GDF-9 mRNA expression in ovaries of fetal sheep. In addition, GDF-9 mRNA expression was detected in oocytes of abnormal type 2 follicles in the ovaries of II sheep. Thus, it does not appear that inhibition of GDF-9 gene expression is the mechanism of action whereby the FecX(I) gene exerts its influence. However, the possibility of translation at specific stages of follicular development cannot presently be ruled out. In addition, the FecX(I) gene may be involved, either directly or indirectly, in regulating expression of receptors for GDF-9. At present, however, neither the FecX(I) gene product nor the GDF-9 receptor has been isolated or characterized.  相似文献   

18.
Members of the transforming growth factor-beta (TGF-beta) superfamily have wide-ranging influences on many tissue and organ systems including the ovary. Two recently discovered TGF-beta superfamily members, growth/differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15; also designated as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play a key role in promoting follicle growth beyond the primary stage. Follicle growth to the small antral stage does not require gonadotrophins but appears to be driven by local autocrine/paracrine signals from both somatic cell types (granulosa and theca) and from the oocyte. TGF-beta superfamily members expressed by follicular cells and implicated in this phase of follicle development include TGF-beta, activin, GDF-9/9B and several BMPs. Acquisition of follicle-stimulating hormone (FSH) responsiveness is a pre-requisite for growth beyond the small antral stage and evidence indicates an autocrine role for granulosa-derived activin in promoting granulosa cell proliferation, FSH receptor expression and aromatase activity. Indeed, some of the effects of FSH on granulosa cells may be mediated by endogenous activin. At the same time, activin may act on theca cells to attenuate luteinizing hormone (LH)-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection appears to depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Activin may contribute to this selection process by sensitizing those follicles with the highest "activin tone" to FSH. Production of inhibin, like oestradiol, increases in selected dominant follicles, in an FSH- and insulin-like growth factor-dependent manner and may exert a paracrine action on theca cells to upregulate LH-induced secretion of androgen, an essential requirement for further oestradiol secretion by the pre-ovulatory follicle. Like activin, BMP-4 and -7 (mostly from theca), and BMP-6 (mostly from oocyte), can enhance oestradiol and inhibin secretion by bovine granulosa cells while suppressing progesterone secretion; this suggests a functional role in delaying follicle luteinization and/or atresia. Follistatin, on the other hand, may favor luteinization and/or atresia by bio-neutralizing intrafollicular activin and BMPs. Activin receptors are expressed by the oocyte and activin may have a further intrafollicular role in the terminal stages of follicle differentiation to promote oocyte maturation and developmental competence. In a reciprocal manner, oocyte-derived GDF-9/9B may act on the surrounding cumulus granulosa cells to attenuate oestradiol output and promote progesterone and hyaluronic acid production, mucification and cumulus expansion.  相似文献   

19.
Bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9 (GDF-9) are oocyte-secreted factors that play essential roles in human folliculogenesis and ovulation. Their bioactivity is tightly regulated through phosphorylation, likely to occur within the Golgi apparatus of the secretory pathway. Here we show that Golgi apparatus casein kinase (G-CK) catalyzes the phosphorylation of rhBMP-15 and rhGDF-9. rhBMP-15, in particular, is an excellent substrate for G-CK. In each protein a single residue is phosphorylated by G-CK, corresponding to the serine residue at the sixth position of the mature region of both rhBMP-15 and rhGDF-9, whose phosphorylation is required for biological activity.  相似文献   

20.
为研究绵羊繁殖力与绵羊BMP-15 (bone morphogenetic protein 15)基因的多态位点关系,并寻找调控绵羊繁殖力的分子标记,以甘肃高山细毛羊、蒙古羊、小尾寒羊三种绵羊为研究对象,采用PCR-SSCP技术与DNA碱基测序相结合的方法,检测该基因第一外显子67、92两个位点在上述三个不同品种绵羊中是否存在FecX^H (Q23→Ter)和FecX^I (V31→D)突变,同时根据检测结果与其繁殖力做相关性分析。结果表明,在三种绵羊中既未检测出与Inverdale绵羊相同的FecX^I突变,也未检测出与Romney绵羊相同的FecX^H突变,因此推测BMP-15基因中影响Romney与Inverdale绵羊高繁殖力的突变位点对以上三种绵羊均无显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号