首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The discovery, more than 60 years ago, of a mutant mouse with a short tail led to the birth of the new field of developmental genetics. Over the years since, numerous investigators have probed the biology of the original short-tail mutation at the T locus, as well the naturally-occurring t haplotypes that were uncovered as a result of their interaction with this mutation. Although the T locus ranks among the best characterized developmental loci in the mouse, it was not among the first to be cloned. This situation has now been rectified with two recent reports from Herrmann, Lehrach and their colleagues. While the T locus is expressed uniquely in the embryonic tissues predicted from the mutant phenotype, the gene itself, as well as the predicted amino acid sequence of the T product, show no strong homology to any known sequence. For the moment, at least, the mystery behind the function of the T locus still awaits definitive resolution.  相似文献   

5.
We describe the construction of a dog embryonic head/neck cDNA library and the isolation of the dog homolog of the Treacher Collins Syndrome gene, TCOF1. The protein shows a similar three-domain structure to that described for human TCOF1, but the dog gene lacks exon 10 and contains two exons not present in the human sequence. In addition, exon 19 is differentially spliced in the dog. How these structural differences relate to TCOF1 phosphorylation is discussed. Isolation of a genomic clone allowed the exon/intron boundaries to be characterized and the dog TCOF1 gene to be mapped to CF Chr 4q31, a region syntenic to human Chr 5. Genetic analysis of DNA of dogs from 13 different breeds identified nine DNA sequence variants, three of which gave rise to amino acid substitutions. Grouping dogs according to head type showed that a C396T variant, leading to a Pro117Ser substitution, is associated with skull/face shape in our dog panel. The numbers are small, but the association between the T allele and brachycephaly, broad skull/short face, was highly significant (p= 0.000024). The short period of time during which the domestic dog breeds have been established suggests that this mutation has arisen only once in the history of dog domestication. Received: 12 January 2001 / Accepted: 1 April 2001  相似文献   

6.
Generalised progressive retinal atrophy (gPRA) is a heterogeneous group of hereditary diseases causing degeneration of the retina in dogs and cats. As a combination of mutations in the RDS/Peripherin and the ROM1 genes leads to the phenotype of retinitis pigmentosa in man we first performed mutation analysis to screen these genes for disease causing mutations followed by the investigation of a digenic inheritance in dogs. We cloned the RDS/Peripherin gene and investigated the RDS/Peripherin and ROM1 genes for disease causing mutations in 13 gPRA-affected dog breeds including healthy animals, obligate gPRA carriers and gPRA-affected dogs. We screened for mutations using single strand conformation polymorphism (SSCP) analysis. Sequence analysis revealed several sequence variations. In the coding region of the RDS/Peripherin gene three nucleotide exchanges were identified (A277C; C316T; G1255A), one of which leads to an amino acid substitution (Ala339Thr). Various silent sequence variations were found in the coding region of the ROM1 gene (A536G, G1006A, T1018C, T1111C, C1150T, C1195T), as well as an amino acid substitution (G252T; Ala54Ser). By excluding the respective gene as a cause for gPRA several sequence variations in the intronic regions were investigated. None of these sequence variations cosegregated with autosomal recessively (ar) transmitted gPRA in 11 breeds. The candidate gene RDS/Peripherin obviously does not harbour the critical mutation causing the autosomal recessive form of gPRA because diseased individuals show heterozygous genotypes for sequence variations in the Miniature Poodle, Dachshund, Australian Cattle Dog, Cocker Spaniel, Chesapeake Bay Retriever, Entlebucher Sennenhund, Sloughi, Yorkshire Terrier, Tibet Mastiff, Tibet Terrier and Labrador Retriever breeds. In the following breeds the ROM1 gene was also excluded indirectly for gPRA: Miniature Poodle, Dachshund, Australian Cattle Dog, Sloughi, Collie, Tibet Terrier, Labrador Retriever and Saarloos/Wolfhound. Digenic inheritance for gPRA is practically excluded for both these genes in four breeds: Miniature Poodle, Dachshund, Labrador Retriever and Saarloos/Wolfhound.  相似文献   

7.
Progressive retinal atrophies (PRA) are a heterogeneous group of inherited eye diseases common to both dogs and man. Over 100 individual canine breeds display some sort of retinal degeneration, making the dog an extremely valuable resource both for finding the genetic determinants of inherited blindness and for developing naturally occurring animal models that mimic human disease. Progressive retinal atrophies within the English mastiff displayed an ambiguous mode of inheritance. By conducting outcross matings between affected English mastiffs and normal animals from other breeds, the mode of inheritance was confirmed as dominant. This directed candidate gene analysis and led to identification of two synonymous mutations and one nonsynonymous mutation within the canine rhodopsin gene. The nonsynonymous mutation (T4R) is the cause of PRA in the English mastiff, and a test was developed to investigate its presence in 17 additional breeds. Testing of PRA-affected animals from 16 breeds revealed that none carry the T4R mutation, indicating a different cause of PRA. Analysis of two affected bull mastiffs revealed one heterozygote (+/T4R) and one homozygous normal individual (+/+). These findings suggest that the genetic origin of PRA is often breed specific and underline the value of outcross mating to circumvent problems that act to mask the mode of inheritance.  相似文献   

8.
We investigated the gene encoding the beta subunit of cGMP phosphodiesterase (PDE6B) as a candidate for generalized progressive retinal atrophy (gPRA), an autosomal recessively transmitted eye disease in dogs. The PDE6B gene was isolated from a genomic library. Single-strand conformation polymorphism analysis revealed eight intronic variations in different subsets of the 14 dog breeds investigated. In addition, we identified an 8-bp insertion after codon 816 in certain Sloughi dogs. Analysis of PRA-affected and obligatory carrier Sloughis showed that this mutation cosegregates with disease status in a large pedigree. All other exchanges identified were not located in functionally relevant parts of the gene (e.g., in the splice signal consensus sites). In most dog breeds (Labrador retriever, Tibetan mastiff, dachshund, Tibetan terrier, miniature poodle, Australian cattle dog, cocker spaniel, collie, Saarloos wolfhound, Chesapeake Bay retriever, and Yorkshire terrier), PDE6B was excluded as a candidate gene for gPRA because heterozygous allele constellations were detected in diseased animals. Therefore, the PDE6B sequence variations did not segregate together with the mutation(s) causing gPRA. Direct and indirect DNA tests concerning gPRA can be offered now for a variety of different dog breeds.  相似文献   

9.
Suppressor of cytokine signaling 2 (SOCS2) is a negative regulator of growth hormone signaling. The deletion of SOCS2 in mice results in a 30-50% increase in post-natal growth. In an effort to identify polymorphisms in the SOCS2 gene that may be associated with body size in dogs, we characterized the canine SOCS2 gene and analyzed its genetic diversity among small and large dog breeds. The study was carried out on a total of 520 dogs from 66 different breeds. Dogs were classified as large or small based on height and weight as determined by their respective American Kennel Club breed standards. The SH2 and SOCS domains of the canine SOCS2 gene were sequenced in 32 dogs from different breeds. Only one non-synonymous sequence variant (DQ415457:g.326G>T) was detected which corresponds to an amino acid change (Asp127Tyr). All samples were genotyped by PCR/RFLP and the allele frequencies were determined for each dog breed. The T allele was distributed primarily among European large dog breeds with a gene frequency ranging from 0.72 to 0.04. The nature of the nucleotide change and the effect on the protein together with the finding of a QTL related to body size in the same CFA15 region by other researchers suggest canine SOCS2 as a potential candidate gene for body size in dogs. Future studies will be needed to clarify the role of the 326G>T polymorphism and its interaction with genes like growth hormone and insulin-like growth factor 1.  相似文献   

10.
PurposeMutations in ADAMTS10 (CFA20) have previously been associated with primary open angle glaucoma (POAG) in the Beagle and Norwegian Elkhound. The closely related gene, ADAMTS17, has also been associated with several different ocular phenotypes in multiple breeds of dog, including primary lens luxation and POAG. We investigated ADAMTS17 as a candidate gene for POAG in the Basset Hound and Basset Fauve de Bretagne dog breeds.MethodsWe performed ADAMTS17 exon resequencing in three Basset Hounds and three Basset Fauve de Bretagne dogs with POAG. Identified variants were genotyped in additional sample cohorts of both breeds and dogs of other breeds to confirm their association with disease.ResultsAll affected Basset Hounds were homozygous for a 19 bp deletion in exon 2 that alters the reading frame and is predicted to lead to a truncated protein. Fifty clinically unaffected Basset Hounds were genotyped for this mutation and all were either heterozygous or homozygous for the wild type allele. Genotyping of 223 Basset Hounds recruited for a different study revealed a mutation frequency of 0.081 and predicted frequency of affected dogs in the population to be 0.007. Based on the entire genotyping dataset the association statistic for the POAG-associated deletion was p = 1.26 x 10−10. All affected Basset Fauve de Bretagne dogs were homozygous for a missense mutation in exon 11 causing a glycine to serine amino acid substitution (G519S) in the disintegrin-like domain of ADAMTS17 which is predicted to alter protein function. Unaffected Basset Fauve de Bretagne dogs were either heterozygous for the mutation (5/24) or homozygous for the wild type allele (19/24). Based on the entire genotyping dataset the association statistic for the POAG-associated deletion was p = 2.80 x 10−7. Genotyping of 85 dogs of unrelated breeds and 90 dogs of related breeds for this variant was negative.ConclusionThis report documents strong associations between two independent ADAMTS17 mutations and POAG in two different dog breeds.  相似文献   

11.
Oculocutaneous albinism type 4 (OCA4) in humans and similar phenotypes in many animal species are caused by variants in the SLC45A2 gene, encoding a putative sugar transporter. In dog, two independent SLC45A2 variants are known that cause oculocutaneous albinism in Doberman Pinschers and several small dog breeds respectively. For the present study, we investigated a Bullmastiff with oculocutaneous albinism. The affected dog was highly inbred and resulted from the mating of a sire to its own grandmother. We obtained whole genome sequence data from the affected dog and searched specifically for variants in candidate genes known to cause albinism. We detected a single base deletion in exon 6 of the SLC45A2 gene (NM_001037947.1:c.1287delC) that has not been reported thus far. This deletion is predicted to result in an early premature stop codon. It was confirmed by Sanger sequencing and perfectly co‐segregated with the phenotype in the available family members. We genotyped 174 unrelated dogs from diverse breeds, all of which were homozygous wildtype. We therefore suggest that SLC45A2:c.1287delC causes the observed oculocutaneous albinism in the affected Bullmastiff.  相似文献   

12.
Progressive rod-cone degeneration (prcd) is a late-onset, autosomal recessive photoreceptor degeneration of dogs and a homolog for some forms of human retinitis pigmentosa (RP). Previously, the disease-relevant interval was reduced to a 106-kb region on CFA9, and a common phenotype-specific haplotype was identified in all affected dogs from several different breeds and breed varieties. Screening of a canine retinal EST library identified partial cDNAs for novel candidate genes in the disease-relevant interval. The complete cDNA of one of these, PRCD, was cloned in dog, human, and mouse. The gene codes for a 54-amino-acid (aa) protein in dog and human and a 53-aa protein in the mouse; the first 24 aa, coded for by exon 1, are highly conserved in 14 vertebrate species. A homozygous mutation (TGC --> TAC) in the second codon shows complete concordance with the disorder in 18 different dog breeds/breed varieties tested. The same homozygous mutation was identified in a human patient from Bangladesh with autosomal recessive RP. Expression studies support the predominant expression of this gene in the retina, with equal expression in the retinal pigment epithelium, photoreceptor, and ganglion cell layers. This study provides strong evidence that a mutation in the novel gene PRCD is the cause of autosomal recessive retinal degeneration in both dogs and humans.  相似文献   

13.
Mutations in the mouse Brachyury (T) gene are characterized by a dominant reduction of tail length and recessive lethality. Two quantitative trait loci, Brachyury-modifier 1 and 2 (Brm1 and Brm2) are defined by alleles that enhance the short-tail Brachyury phenotype. Here we report on a genetic analysis of a visible dominant mutation Abnormal feet and tail (Aft) located in the vicinity of Brm1. Affected animals display kinky tails and syndactyly in the hindlimbs, both likely resulting from a defect in apoptosis. We observed an unusual genetic incompatibility between Aft and certain genetic backgrounds. We show that Aft and T are likely to interact genetically, since some double heterozygotes are tailless. In addition to the tail and hindlimb phenotypes, Aft-bearing mutants display characteristic late-onset skin lesions. We therefore tested for allelism between Aft and a closely linked recessive mutation rough coat (rc) and found that these two mutations are likely nonallelic. Our results provide a valuable resource for the study of mammalian skin development and contribute to the genetic analysis of Brachyury function.  相似文献   

14.
T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.  相似文献   

15.
Familial hypertrophic cardiomyopathy (HCM) is a primary myocardial disease with a prevalence of 1 in 500 in human beings. Causative mutations have been identified in several sarcomeric genes, including the cardiac myosin binding protein C (MYBPC3) gene. Heritable HCM also exists in a large-animal model, the cat, and we have previously reported a mutation in the MYBPC3 gene in the Maine coon breed. We now report a separate mutation in the MYBPC3 gene in ragdoll cats with HCM. The mutation changes a conserved arginine to tryptophan and appears to alter the protein structure. The ragdoll is not related to the Maine coon and the mutation identified is in a domain different from that of the previously identified feline mutation. The identification of two separate mutations within this gene in unrelated breeds suggests that these mutations occurred independently rather than being passed on from a common founder.  相似文献   

16.
The presence of a recessive inherited muscle disease in Old Danish Pointing Dogs has been well known for years. Comparisons of this disease with myasthenic diseases of other dog breeds and humans have pointed toward a defect in the synthesis of the neurotransmitter acetylcholine possibly due to decreased activity of the enzyme choline acetyltransferase. We sequenced exons 5-18 of the gene encoding choline acetyltransferase (CHAT) in 2 affected and 2 unaffected dogs and identified a G to A missense mutation in exon 6. The mutation causes a valine to methionine substitution and segregates in agreement with the inheritance of the disease. The mutation was not detected in 50 dogs representing 25 other dog breeds. A DNA test has been developed and is now available to the breeders of Old Danish Pointing Dogs.  相似文献   

17.
Rho (rhodopsin; opsin plus 11-cis-retinal) is a prototypical G protein-coupled receptor responsible for the capture of a photon in retinal photoreceptor cells. A large number of mutations in the opsin gene associated with autosomal dominant retinitis pigmentosa have been identified. The naturally occurring T4R opsin mutation in the English mastiff dog leads to a progressive retinal degeneration that closely resembles human retinitis pigmentosa caused by the T4K mutation in the opsin gene. Using genetic approaches and biochemical assays, we explored the properties of the T4R mutant protein. Employing immunoaffinity-purified Rho from affected RHO(T4R/T4R) dog retina, we found that the mutation abolished glycosylation at Asn(2), whereas glycosylation at Asn(15) was unaffected, and the mutant opsin localized normally to the rod outer segments. Moreover, we found that T4R Rho(*) lost its chromophore faster as measured by the decay of meta-rhodopsin II and that it was less resistant to heat denaturation. Detergent-solubilized T4R opsin regenerated poorly and interacted abnormally with the G protein transducin (G(t)). Structurally, the mutation affected mainly the "plug" at the intradiscal (extracellular) side of Rho, which is possibly responsible for protecting the chromophore from the access of bulk water. The T4R mutation may represent a novel molecular mechanism of degeneration where the unliganded form of the mutant opsin exerts a detrimental effect by losing its structural integrity.  相似文献   

18.
Genetic polymorphism was observed in the sialic acid species constituting the terminal sugar residues of hematosides from dog erythrocytes. One was N-acetylneuraminic acid and the other phenotype was N-glycolylneuraminic acid, regulated by an autosomal dominant allele (Yasue, S., Handa, S., Miyagawa, S., Inoue, J., Hasegawa, A., & Yamakawa, T. (1978) J. Biochem. 83, 1101-1107). In this study we analyzed blood samples from 1,591 dogs of 36 breeds and demonstrated that the expression of N-glycolylneuraminic acid was limited to several breeds of oriental dogs in spite of its dominant nature. Moreover, the incidence of N-glycolylneuraminic acid was higher in native breeds of northern China, Korea and the southern part of Japan than in other oriental breeds. On the other hand, the Hokkaido-dog is unique in not expressing N-glycolylneuraminic acid. These results suggest that the native breeds in the southern part of Japan came from northern China via the Korean peninsula in contrast with indigenous breeds of the northern part of Japan.  相似文献   

19.
20.
Allantoin is the end product of purine catabolism in all mammals except humans, great apes, and one breed of dog, the Dalmatian. Humans and Dalmatian dogs produce uric acid during purine degradation, which leads to elevated levels of uric acid in blood and urine and can result in significant diseases in both species. The defect in Dalmatians results from inefficient transport of uric acid in both the liver and renal proximal tubules. Hyperuricosuria and hyperuricemia (huu) is a simple autosomal recessive trait for which all Dalmatian dogs are homozygous. Therefore, in order to map the locus, an interbreed backcross was used. Linkage mapping localized the huu trait to CFA03, which excluded the obvious urate transporter 1 gene, SLC22A12. Positional cloning placed the locus in a minimal interval of 2.5 Mb with a LOD score of 17.45. A critical interval of 333 kb containing only four genes was homozygous in all Dalmatians. Sequence and expression analyses of the SLC2A9 gene indicated three possible mutations, a missense mutation (G616T;C188F) and two promoter mutations that together appear to reduce the expression levels of one of the isoforms. The missense mutation is associated with hyperuricosuria in the Dalmatian, while the promoter SNPs occur in other unaffected breeds of dog. Verification of the causative nature of these changes was obtained when hyperuricosuric dogs from several other breeds were found to possess the same combination of mutations as found in the Dalmatian. The Dalmatian dog model of hyperuricosuria and hyperuricemia underscores the importance of SLC2A9 for uric acid transport in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号