首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition and the structures of native “group B saponin” in soybean seeds were reinvestigated. Five kinds of saponins named soyasaponins αg, βg, βa, γg, and γa, according to elution order from HPLC, were isolated and the structures were characterized as 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) attaching through an acetal linkage to the C-22 hydroxyl of the aglycones of soyasaponins V, I, II, III, and IV, respectively, by UV, IR, MS, and NMR. DDMP-conjugated saponins were detected as major saponin constituents by extraction under mild conditions, and soyasaponins I–V were not detected. Therefore it was strongly suggested that these DDMP-conjugated saponins were genuine saponins in the intact soybeans.  相似文献   

2.
Characterization and antimutagenic activity of soybean saponins   总被引:6,自引:0,他引:6  
An extract was prepared from a commercial soybean-processing by-product (soybean molasses) and was fractionated into purified chemical components. In previous work, this extract (phytochemical concentrate, PCC) repressed induced genomic DNA damage, whole cell clastogenicity and point mutation in cultured mammalian cells. In the current study, a chemical fraction was isolated from PCC using preparative high-performance liquid chromatography (HPLC). This fraction, PCC100, repressed 2-acetoxyacetylaminofluorene (2AAAF)-induced DNA damage in Chinese hamster ovary (CHO) cells as measured by single cell gel electrophoresis (alkaline Comet assay). Using liquid chromatography-electrospray ionization-mass spectroscopy and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, PCC100 was shown to consist of a mixture of group B soyasaponins and 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) soyasaponins. These include soyasaponins I, II, III, IV, V, Be, betag, betaa, gammag and gammaa. Purified soyasapogenol B aglycone prepared from fraction PCC100 demonstrated significant antigenotoxic activity against 2AAAF. To our knowledge, these data demonstrate for the first time the antimutagenic activity of soybean saponins in mammalian cells.  相似文献   

3.
A study was conducted in hamsters to determine if group B soyasaponins improve plasma cholesterol status by increasing the excretion of fecal bile acids and neutral sterols, to identify group B soyasaponin metabolites, and to investigate the relationship between a fecal group B soyasaponin metabolite and plasma lipids. Twenty female golden Syrian hamsters, 11-12 weeks old and 85-125 g, were randomly assigned to a control diet or a similar diet containing group B soyasaponins (containing no isoflavones), 2.2 mmol/kg, for 4 weeks. Hamsters fed group B soyasaponins had significantly lower plasma total cholesterol (by 20%), non-high-density lipoprotein (HDL) cholesterol (by 33%), and triglycerides (by 18%) compared with those fed casein (P < 0.05). The ratio of total cholesterol to HDL cholesterol was significantly lower (by 13%) in hamsters fed group B soyasaponins than in those fed casein (P < 0.05). The excretion of fecal bile acids and neutral sterols was significantly greater (by 105% and 85%, respectively) in soyasaponin-fed hamsters compared with those fed casein (P < 0.05). Compared with casein, group B soyasaponins lowered plasma total cholesterol levels and non-HDL cholesterol levels by a mechanism involving greater excretion of fecal bile acids and neutral sterols. Hamsters fed group B soyasaponins statistically clustered into two fecal soyasaponin metabolite-excretion phenotypes: high excreters (n = 3) and low excreters (n = 7). When high and low producers of this soyasaponin metabolite were compared for plasma cholesterol status, the high producers showed a significantly lower total-cholesterol-to-HDL-cholesterol ratio compared with the low producers (1.38 +/- 0.7 vs. 1.59 +/- 0.13; P < 0.03). Greater production of group B soyasaponin metabolite in hamsters was associated with better plasma cholesterol status, suggesting that gut microbial variation in soyasaponin metabolism may influence the health effects of group B soyasaponins.  相似文献   

4.
In the course of development of semi-preparative liquid chromatographic methods for the isolation of individual quillaja saponins from Quillaja saponaria (L.), some commercially available quillaja bark extracts revealed a distinctive and characteristic pattern of additional peaks in the chromatogram that could not be attributed to saponins commonly present in quillaja. To identify these peaks, analytical procedures based on HPLC coupled with high resolution MS detection were optimized which allowed the identification of the additional saponins Mi saponin A, Mi saponin B, Mi saponin C, madhucoside A and madhucoside B. These compounds are known to be the main saponins of the Indian plant Madhuca longifolia (L.). Tandem MS experiments were performed for the unambiguous assignment of the sapogenin. Madhuca saponins yielded a characteristic fragment of protobassic acid, whereas quillaja saponins showed a fragment of quillaic acid as expected. In addition, samples from madhuca seed kernels were analysed to verify the origin of the characteristic chromatographic peak pattern observed frequently in commercially available quillaja bark extracts.  相似文献   

5.
High-performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-ESI/MS) and evaporative light scattering detection (HPLC-ELSD), respectively, has been performed for the simultaneous identification and quantification of six C(21) steroid saponins, including cynanversicoside A, B, D, G, glaucoside C and glaucogenin C-3-O-beta-d-thevetopyranoside in Radix Cynanchi Atrati. The extraction of the C(21) steroidal saponins was performed using a B-811 Buchi Universal Extraction System in Warm Solvent Mode, and the analyte was concentrated by column chromatography before HPLC analysis. The chromatographic separation was performed on an Agilent Zorbax Extend C(18) analytical column efficiently using gradient elution with acetonitrile and water. The method was validated with acceptable linearities (r > 0.9991) and recoveries (98.2-101.3%). The limits of detection of the C(21) steroid saponins were from 0.2 microg for glaucogenin C-3-O-beta-d-thevetopyranoside to 0.5 microg for cynanversicoside B. The intra- and inter-day precisions of the method were evaluated and were less than 5.0%. The method was successfully used to analyse 20 batches of Radix Cynanchi Atrati. The content of C(21) steroid saponins in the plant material varied significantly from habitat to habitat, confirming the necessity to control the quality of Radix Cynanchi Atrati during its preparation and application in the clinic.  相似文献   

6.
Triterpene saponins isolated from Medicago sativa (alfalfa) and Medicago truncatula roots were separated, profiled and identified using an optimized, reversed-phase HPLC with on-line photodiode array detection and electrospray ionization mass spectrometry method (HPLC/PDA/ESI/MS). ESI source polarity and solvent conditions were compared. The effects of these parameters on mass spectral attributes were determined. Ion structures were confirmed using tandem mass spectrometry (MS/MS). Fifteen saponins were identified in alfalfa (cultivars Apollo, Radius, and Kleszczewska) based upon negative-ion HPLC/PDA/ESI/MS, HPLC/PDA/ESI/MS/MS and literature data. In addition, the identification of two new malonated saponins in alfalfa are proposed. Negative-ion HPLC/PDA/ESI/MS and HPLC/PDA/ESI/MS/MS spectra were utilized along with HPLC retention times to profile and identify 27 saponins in M. truncatula (cultivar Jemalong, A17). M. truncatula yielded a much more complex mixture of saponins than observed for alfalfa. The authors are not aware of any previous reports identifying saponin glycosides in M. truncatula.  相似文献   

7.
The presence of saponins and the molluscicidal activity of the roots, leaves, seeds and fruits of Swartzia langsdorffii Raddi (Leguminosae) against Biomphalaria glabrata adults and eggs were investigated. The roots, seeds and fruits were macerated in 95% ethanol. These extracts exerted a significant molluscicidal activity against B. glabrata, up to a dilution of 100 mg/l. Four mixtures (A2, B2, C and D) of triterpenoid oleanane type saponins were chromatographically isolated from the seed and fruit extracts. Two known saponins (1 and 2) were identified as beta-D-glucopyranosyl-[alpha-L-rhamnopyranosyl-(1->3)- beta-D-glucuronopyranosyl-(1->3)]-3beta-hydroxyolean-12-ene-28 -oate, and beta-D-glucopyranosyl-(1->3)-beta-D-glucuronopyranosyl-(1 ->3)]-3beta-hydroxyolean-12-ene-28-oate, respectively. These two saponins were present in all the mixtures, together with other triterpenoid oleane type saponins, which were shown to be less polar, by reversed-phase HPLC. The saponin identifications were based on spectral evidence, including H- H two-dimensional correlation spectroscopy, nuclear Overhauser and exchange spectroscopy, heteronuclear multiple quantum coherence, and heteronuclear multiple-bond connectivity experiments. The toxicity of S. langsdorffii saponins to non-target organisms was prescreened by the brine shrimp lethality test.  相似文献   

8.
连接有蒸发光散射检测器的高速逆流色谱仪首次成功的应用于制备和分离青葙子中的皂苷celosins A和B.二氯甲烷∶正丁醇∶甲醇∶水(4∶0.3∶3∶2)+0.5%冰醋酸作为洗脱溶剂系统.从半制备型HSCCC收集到的组分进行HPLC分析,可以得到:celosin A纯度为98.9%,celosin B的纯度为98.1%.这是高速逆流色谱仪首次被用于纯化青葙子中的皂苷,两个化合物的结构通过碳谱和质谱来确定.  相似文献   

9.
The anti-inflammatory properties of soyasaponins (especially soyasaponins with different chemical structures) have scarcely been investigated. We investigated the inhibitory effects of five structural types of soyasaponins (soyasaponin A1, A2, I and soyasapogenol A, B) on the induction of nitric oxide (NO) and inducible NO synthase (iNOS) in murine RAW 264.7 cells activated with lipopolysaccharide (LPS). Soyasaponin A1, A2 and I (25-200 μg/mL) dose-dependently inhibited the production of NO and tumor necrosis factor α (TNF-α) in LPS-activated macrophages, whereas soyasapogenol A and B did not. Furthermore, soyasaponin A1, A2 and I suppressed the iNOS enzyme activity and down-regulated the iNOS mRNA expression both in a dose-dependent manner. The reporter gene assay revealed that soyasaponin A1, A2 and I decreased LPS-induced nuclear factor kappa B (NF-κB) activity. Soyasaponin A1, A2 and I exhibit anti-inflammatory properties by suppressing NO production in LPS-stimulated RAW 264.7 cells through attenuation of NF-κB-mediated iNOS expression. It is proposed that the sugar chains present in the structures of soyasaponins are important for their anti-inflammatory activities. These results have important implication for using selected soyasaponins towards the development of effective chemopreventive and anti-inflammatory agents.  相似文献   

10.
High-performance liquid chromatographic (HPLC) with evaporative light scattering detection (ELSD) and HPLC with electrospray ionization multistage tandem mass spectrometry (HPLC–ESI-MSn) were used to identify and quantify steroid saponins in Paris and Trillium plants. The content of the known saponins such as Paris I, II, III, V, VI, VII, H, gracillin and protodioscin in Paris and Trillium plants was determined simultaneously using the developed HPLC-ELSD method. Furthermore, other 12 steroid saponins were identified by HPLC–ESI(+/−)-MSn detection. In the end, a developed analytical procedure was proved to be a reliable and rapid method for the quality control of Paris and Trillium plants. In addition, the alternative resources for Paris yunnanensis used as a traditional Chinese medicine were discovered according to the hierarchical clustering analysis of the saponin fraction of these plants.  相似文献   

11.
Introduction – Steroidal saponins are the main active constituents in Ophiopogon japonicus Ker‐Gawler (Liliaceae). However, because of their high polarity, non‐chromophores and low content in plants, steroidal saponins are difficult to be isolated from O. japonicus by conventional phytochemical methods. Objective – To develop a sensitive and rapid approach towards the structural analysis of steroidal saponins using HPLC/ESI‐MSn. Methodology – The fragmentation behaviors of six known steroidal saponins in negative ESI‐MSn were used to deduce their mass spectral fragmentation mechanisms. By using HPLC/ESI‐MSn, the important structural information on aglycone types, sugar types and saccharide sequences can be obtained. Results – According to the HPLC retention behaviour, the molecular structural characteristics provided by multistage mass spectrometry spectra and the literature, a total of 8 steroidal saponins were tentatively identified or characterized in O. japonicus rapidly. Conclusion – This work has shown that HPLC‐ESI‐MSn may be used as an effective and rapid method for the characterization and identification of steroidal saponins from O. japonicus. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Introduction – Centrifugal partition chromatography (CPC), as a continuous liquid–liquid partition chromatography with no solid support matrix, combined with evaporative light scattering detection (ELSD) was employed for systematic separation and purification of weak‐chromophoric saponins from a highly valued and important traditional Chinese herbal medicine, Panax notoginseng. Objective – To separate and isolate high‐purity saponins from extract of Panax notoginseng using CPC‐ELSD with a simple and low toxicity solvent system. Methodology – Samples were preparaed by extracting the root material with acetone, treated with n‐butanol and then freeze‐dried. CPC‐ELSD was applied in the separation and detection of notoginsenoside and ginsenosides from extract of Panax notoginseng using a solvent system composed of ethyl acetate–n‐butanol–water (1:1:2, v/v/v). The saponins were analysed and identified by their retention time with high‐performance liquid chromatography (HPLC) coupled with ELSD, as well as electrospray ionisation tandem mass spectrometry (ESI‐MSn ) in the negative and positive ion modes with the authentic standards. Results – A total of 9.6 mg of notoginsenoside R1, 67.8 mg of ginsenoside Rg1, 2.3 mg of Re and 286.5 mg of Rb1 were purified from 487.2 mg of n‐butanol extract of P. notoginseng. The purities of obtained saponins in a single run were assessed to be over 98% by HPLC‐ELSD. Conclusion – CPC‐ELSD was proved to be a very fast and efficient tool for separation of high‐purity dammarane saponins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The kernel cake produced from Balanites aegyptiaca fruit of Israeli origin was analysed for its saponin constituents using high-performance liquid chromatography-mass spectrometry (HPLC-MS). The HPLC was equipped with a reversed-phase C18 column and a refractive index detector (RID), and elution was isocratic with methanol and water (70:30). The MS system was equipped with electrospray ionisation (ESI). Nine compounds were chromatographically separated, their masses were determined in the negative ion mode and subsequent fragmentation of each component was carried out. From the nine components, six saponins with molecular masses of 1196, 1064, 1210, 1224, 1078 and 1046 Da were identified, with the compound of mass 1210 Da being the main saponin (ca. 36%). Saponins with masses of 1224 and 1046 Da have not been previously reported in B. aegyptiaca. In all saponins, diosgenin was found to be the sole aglycone. This study shows that HPLC-ESI/MS is a quick and reliable technique for characterizing the saponins from kernel cake of B. aegyptiaca.  相似文献   

14.
Eight wild soybean accessions with different saponin phenotypes were used to examine saponin composition and relative saponin quantity in various tissues of mature seeds and two-week-old seedlings by LC–PDA/MS/MS. Saponin composition and content were varied according to tissues and accessions. The average total saponin concentration in 1?g mature dry seeds of wild soybean was 16.08?±?3.13?μmol. In two-week-old seedlings, produced from 1?g mature seeds, it was 27.94?±?6.52?μmol. Group A saponins were highly concentrated in seed hypocotyl (4.04?±?0.71?μmol). High concentration of DDMP saponins (7.37?±?5.22?μmol) and Sg-6 saponins (2.19?±?0.59?μmol) was found in cotyledonary leaf. In seedlings, the amounts of group A and Sg-6 saponins reduced 2.3- and 1.3-folds, respectively, while DDMP?+?B?+?E saponins increased 2.5-fold than those of mature seeds. Our findings show that the group A and Sg-6 saponins in mature seeds were degraded and/or translocated by germination whereas DDMP saponins were newly synthesized.  相似文献   

15.
Introduction – The lack of pharmacopoeial methodologies for the quality control of plants used for therapeutic purposes is a huge problem that impacts directly upon public health. In the case of saponins, their great structural complexity, weak glycoside bonds and high polarity hinder their identification by conventional techniques. Objective – To apply high‐performance liquid chromatography–electrospray tandem mass spectrometry (HPLC‐ESI/MSn) to identify the O‐glycoside sequence of saponins from the roots of Phytolacca bogotensis. Methodology – Saponins were isolated by preparative HPLC and characterised by NMR spectroscopic experiments. Collision‐induced dissociation (CID) of isolated saponins was performed producing typical degradation reactions that can be associated with several glycosidic bonds as empirical criteria. A method using solid‐phase extraction (SPE) and HPLC/ESI‐MSn for the characterisation of saponins and identification of novel molecules is described. Results – Three saponins reported for the first time in P. bogotensis were isolated and characterised by NMR spectroscopy. Characteristic cross ring cleavage reactions have been used as empirical criteria for the characterisation of the glycosidic bonds most frequently reported for Phytolacca saponins. One new saponin was proposed on the basis of empirical criteria, and other five saponins were identified for the first time for P. bogotensis using HPLC‐ESI/MSn. Conclusion – Electrospray ionisation in combination with tandem mass spectrometry has been established as a powerful tool for the profiling of saponins from roots of P. bogotensis. CID proved to be a useful tool for the characterisation and identification of known and novel saponins from the plant family Phytolaccaceae and can be used for quality control purposes of crude plant extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
We and others have recently shown that soyasaponins abundant in soybeans can decrease inflammation by suppressing the nuclear factor kappa B (NF-kB)-mediated inflammation. However, the exact molecular mechanisms by which soyasaponins inhibit the NF-kB pathway have not been established. In this study in macrophages, soyasaponins (A1, A2 and I) inhibited the lipopolysaccharide (LPS)-induced release of inflammatory marker prostaglandin E2 (PGE2) to a similar extent as the NF-kB inhibitor (BAY117082). Soyasaponins (A1, A2 and I) also suppressed the LPS-induced expression of cyclooxygenase 2 (COX-2), another inflammatory marker, in a dose-dependent manner by inhibiting NF-kB activation. In defining the associated mechanisms, we found that soyasaponins (A1, A2 and I) blunted the LPS-induced IKKα/β phosphorylation, IkB phosphorylation and degradation, and NF-kB p65 phosphorylation and nuclear translocation. In studying the upstream targets of soyasaponins on the NF-kB pathway, we found that soyasaponins (A1, A2 and I) suppressed the LPS-induced activation of PI3K/Akt similarly as the PI3K inhibitor LY294002, which alone blocked the LPS-induced activation of NF-kB. Additionally, soyasaponins (A1, A2 and I) reduced the LPS-induced production of reactive oxygen species (ROS) to the same extent as the anti-oxidant N-acetyl-L-cysteine, which alone inhibited the LPS-induced phosphorylation of Akt, IKKα/β, IkBα, and p65, transactivity of NF-kB, PGE2 production, and malondialdehyde production. Finally, our results show that soyasaponins (A1, A2 and I) elevated SOD activity and the GSH/GSSG ratio. Together, these results show that soyasaponins (A1, A2 and I) can blunt inflammation by inhibiting the ROS-mediated activation of the PI3K/Akt/NF-kB pathway.  相似文献   

17.
目的探讨三七皂甙对五步蛇咬伤的治疗作用。方法将2011年4~11月我院收治的五步蛇咬伤3h内就诊的患者30例随机分为对照组(A组)21例,给予常规治疗;研究组(B组)9例,在常规治疗的基础上加用三七皂甙治疗。观察比较两组患者24h后磷酸肌酸激酶的变化以及肿胀程度的改善情况。结果B组24h后磷酸肌酸激酶较A组下降,肿胀程度比A组减轻,差异均有显著统计学意义(P〈0.05)。结论三七皂甙对五步蛇咬伤的疗效明显,值得临床推广。  相似文献   

18.
19.
High-performance liquid chromatography (HPLC) is being used extensively to characterize active polypeptides, precursor processing mechanisms, and cooperative peptide—protein noncovalent complexes in neuroendocrine pathways for neurohypophysial peptide hormones, oxytocin and vasopressin, and the hormone-associated proteins, neurophysins. Reversed-phase and ion-exchange HPLC polypeptide mapping have been used to detect the hormones, associated proteins, and other molecular forms containing these. This mapping but also ultimately to identify anatomical sites which contain the neurophysin/ hormone molecular pathways and to define the relatedness of polypeptide forms contained in different pathways. Reversed-phase HPLC also has provided a means to study proteolytic precursor processing, both to isolate synthetic and semisynthetic polypeptides and intermediates produced by these reactions. Finally, bioaffinity HPLC is being evaluated as a separatory and analytical tool. The latter includes its use to characterize the noncovalent peptide—protein and protein—protein interactions which occur among the molecular forms of the neurophysin/hormone pathways. These experiments typify the impact of HPLC for both analytical and preparative separations in studies of biologically active peptides and proteins.  相似文献   

20.
Although certain saponins in soybean seeds have been reported to have health benefits, group A acetyl saponins cause undesirable bitter and astringent tastes in soy products. Therefore, reduction or elimination of group A saponins is an important target for soybean breeders. A wide survey of cultivated and wild soybean germplasm identified a mutant line that lacked group A saponins. The absence of soyasapogenol A, a group A saponin aglycone, is controlled by a single recessive allele, sg-5 that mapped genetically near the SSR marker, Satt117, on soybean chromosome 15 (linkage group E). The locus is epistatic to Sg-1, which controls the terminal sugar variation on the C-22 sugar chain of soyasapogenol A, and allelic differences at this locus lead to changes in the amount of DDMP saponins and their derivatives group B and E products. These findings provide a new insight into the biosynthetic pathway of soybean saponins, and identify a genetic approach that can be applied to improve the quality of foods produced from soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号