首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human T cells can be divided into subsets based on the expression of CD29, CD45RA, CD45RO, LFA-3, or CD11a. It has been suggested that the subset of CD4+ T cells that expresses high densities of CD29, CD11a, CD45RO, and LFA-3 contains "memory" T cells, whereas the subset of cells that expresses CD45RA contains "naive" T cells. In order to obtain a more complete picture of the functional capacities of human naive and memory CD4+ and CD8+ T cell subsets, highly purified T cells were activated with a uniform stimulus and responses were examined in bulk cultures and under limiting dilution conditions. T cell activation was achieved with an immobilized mAb to the CD3 molecular complex, 64.1. In bulk cultures, immobilized 64.1 stimulated a vigorous response. Moreover, the number of cells entering the cell cycle, the magnitude of the [3H]thymidine incorporation, and the growth of the cells over 6 days in culture by naive and memory CD4+ T cells was comparable. To delineate the frequency of responsive cells in each subset more precisely, cells were cultured with immobilized 64.1 at limiting dilution and the precursor frequency of responding cells was assessed by examining wells microscopically for visible growth. Immobilized 64.1 was able to induce some T cells from each subset to grow in the complete absence of AC, when exogenous IL2 was present. The number of responding CD4+ and CD8+ cells was comparable. The percentage of naive cells responding in each population was approximately three times greater than the frequency of memory cells. IL4 could also support the growth of immobilized 64.1-activated CD4+ T cells, but the frequency of responding cells was much lower than that supported by IL2. The vast majority of the IL-4 responsive CD4+ cells resided within the naive cell subset. The data indicate that the response of CD4+ and CD8+ naive and memory T cell subsets to immobilized anti-CD3 depends on the density of responding cells. Naive T cells have an enhanced capacity to grow when cultured in the absence of other T cells or accessory cells. This ability may facilitate their expansion during primary immune responses.  相似文献   

2.
CD4+ T lymphocytes of individuals infected with human immunodeficiency virus type 1 (HIV-1) exhibit a qualitative defect in their ability to mount memory responses to previously encountered antigens although their responses to mitogens remain normal. T cells responsible for memory responses can be distinguished from naive T cells based on differential expression of isoforms of the tyrosine phosphatase CD45. It has been suggested that memory CD4+ T cells from infected individuals have a greater virus burden than naive CD4+ T cells and that this accounts for the loss of recall responses in infected individuals. However, it has been unclear whether naive and memory T cells are equally susceptible to infection and to the cytopathic effects of the virus. We therefore infected highly purified resting naive and memory CD4+ T cells from HIV-1-seronegative individuals with HIV-1(LAI). Infected cells were then stimulated with phytohemagglutinin to render them permissive for viral replication. Cell viability and growth rate were monitored for 8 to 10 days as indicators of cytopathic effects induced by HIV-1(LAI). Our results indicated that naive and memory CD4+ T cells display marked differences in susceptibility to the cytopathic effects induced by HIV-1(LAI), infection. The cytopathic effects induced by HIV-1(LAI) were much more severe in memory CD4+ T cells than in naive CD4+ T cells. Differential cytopathic effects in naive and memory T cells were not due to differences in virus entry into and replication in these cell populations. Rather, memory cells were more susceptible to cytopathic effects. Pronounced cytopathic effects in memory cells were clearly detectable at 7 day postinfection. Cell death occurred at the single-cell level and was not accompanied by syncytium formation. The growth rate of infected memory CD4+ T cells was also severely compromised compared to that of naive CD4+ T cells, whereas the growth rates of both uninfected naive and memory CD4+ T cells were approximately the same. At least a portion of the dying cells exhibited biochemical changes characteristic of apoptosis. These results suggest that the selective functional defects present in the memory CD4+ T-cell subset of HIV-1-infected individuals may in part be the result of the greater susceptibility of memory T cells to cytopathic effects induced by HIV-1.  相似文献   

3.
The low precursor frequency of individual virus-specific CD8(+) T cells in a naive host makes the early events of CD8(+) T cell activation, proliferation, and differentiation in response to viral infection a challenge to identify. We have therefore examined the response of naive CD8(+) T cells to pulmonary influenza virus infection with a murine adoptive transfer model using hemagglutinin-specific TCR transgenic CD8(+) T cells. Initial activation of CD8(+) T cells occurs during the first 3 days postinfection exclusively within the draining lymph nodes. Acquisition of CTL effector functions, including effector cytokine and granule-associated protease expression, occurs in the draining lymph nodes and differentially correlates with cell division. Division of activated CD8(+) T cells within the draining lymph nodes occurs in an asynchronous manner between days 3 and 4 postinfection. Despite the presence of Ag for several days within the draining lymph nodes, dividing T cells do not appear to maintain contact with residual Ag. After multiple cell divisions, CD8(+) T cells exit the draining lymph nodes and migrate to the infected lung. Activated CD8(+) T cells also disseminate throughout lymphoid tissue including the spleen and distal lymph nodes following their emigration from draining lymph nodes. These results demonstrate an important role for draining lymph nodes in orchestrating T cell responses during a local infection of a discrete organ to generate effector CD8(+) T cells capable of responding to infection and seeding peripheral lymphoid tissues.  相似文献   

4.
Infection of mice with lymphocytic choriomeningitis virus (LCMV) is frequently used to study the underlying principles of viral infections and immune responses. We fit a mathematical model to recently published data characterizing Ag-specific CD8+ T cell responses during acute (Armstrong) and chronic (clone 13) LCMV infection. This allows us to analyze the differences in the dynamics of CD8+ T cell responses against different types of LCMV infections. For the four CD8+ T cell responses studied, we find that, compared with the responses against acute infection, responses against chronic infection are generally characterized by an earlier peak and a faster contraction phase thereafter. Furthermore, the model allows us to give a new interpretation of the effect of thymectomy on the dynamics of CD8+ T cell responses during chronic LCMV infection: a smaller number of naive precursor cells is sufficient to account for the observed differences in the responses in thymectomized mice. Finally, we compare data characterizing LCMV-specific CD8+ T cell responses from different laboratories. Although the data were derived from the same experimental model, we find quantitative differences that can be solved by introducing a scaling factor. Also, we find kinetic differences that are at least partly due to the infrequent measurements of CD8+ T cells in the different laboratories.  相似文献   

5.
In spite of the present belief that latent cytomegalovirus (CMV) infection drives CD8+ T-cell differentiation and induces premature immune senescence, no systematic studies have so far been performed to compare phenotypical and functional changes in the CD8+ T-cell repertoire in CMV-infected and noninfected persons of different age groups. In the present study, number, cytokine production, and growth potential of naive (CD45RA+ CD28+), memory (CD45RA- CD28+), and effector (CD45RA+ CD28- or CD45RA- CD28-) CD8+ T cells were analyzed in young, middle-aged, and elderly clinically healthy persons with a positive or negative CMV antibody serology. Numbers and functional properties of CMVpp65(495-503)-specific CD8+ T cells were also studied. We demonstrate that aging as well as CMV infection lead to a decrease in the size of the naive CD8+ T-cell pool but to an increase in the number of CD8+ effector T cells, which produce gamma interferon but lack substantial growth potential. The size of the CD8+ memory T-cell population, which grows well and produces interleukin-2 (IL-2) and IL-4, also increases with aging, but this increase is missing in CMV carriers. Life-long latent CMV infection seems thus to diminish the size of the naive and the early memory T-cell pool and to drive a Th1 polarization within the immune system. This can lead to a reduced diversity of CD8 responses and to chronic inflammatory processes which may be the basis of severe health problems in elderly persons.  相似文献   

6.
The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. The secondary lymphoid tissues are highly innervated by sympathetic nerve fibers that store dopamine at high contents. Lymphocytes also produce dopamine. In this study, we examined expression and function of dopamine receptors in lymphocytes. We found that D3 was the predominant subtype of dopamine receptors in the secondary lymphoid tissues and selectively expressed by naive CD8+ T cells of both humans and mice. Dopamine induced calcium flux and chemotaxis in mouse L1.2 cells stably expressing human D3. These responses were almost completely inhibited by pertussis toxin, indicating that D3 was coupled with the Galphai class of G proteins. Consistently, dopamine selectively induced chemotactic responses in naive CD8+ T cells of both humans and mice in a manner sensitive to pertussis toxin and D3 antagonists. Dopamine was highly synergistic with CCL19, CCL21, and CXCL12 in induction of chemotaxis in naive CD8+ T cells. Dopamine selectively induced adhesion of naive CD8+ T cells to fibronectin and ICAM-1 through activation of integrins. Intraperitoneal injection of mice with dopamine selectively attracted naive CD8+ T cells into the peritoneal cavity. Treatment of mice with a D3 antagonist U-99194A selectively reduced homing of naive CD8+ T cells into lymph nodes. Collectively, naive CD8+ T cells selectively express D3 in both humans and mice, and dopamine plays a significant role in migration and homing of naive CD8+ T cells via D3.  相似文献   

7.
The role of T-cell subsets in respiratory syncytial virus (RSV) infection was investigated by using monoclonal antibodies (MAbs) to selectively deplete gnotobiotic calves of CD4+, CD8+, or WC1+ gamma delta T-cell receptor+ lymphocytes. Injection of these MAbs produced specific reductions of the target cell populations in the circulation and tissues. Ten days after RSV infection, immunoglobulin M (IgM), IgG1, and IgA antibodies were detected in sera and lung washings from control calves. Depletion of CD8+ T cells had no effect on either the serum or local antibody responses to RSV, whereas depletion of CD4+ T cells suppressed the antibody responses in two of three calves. The IgM and IgA responses were significantly increased in the lung washings of calves from which WC1+ T cells were depleted. Depletion of CD4+ or WC1+ T cells caused no significant delay in virus clearance, although an increase in the extent of pneumonic consolidation was observed in anti-CD4-treated calves. Nasopharyngeal excretion of RSV was prolonged in calves depleted of CD8+ T cells, and virus was isolated in high titers from lung washings of these animals 10 days after infection, whereas virus had been cleared from lung washings of all other animals. The delayed virus clearance was associated with an increase in the severity of pneumonic consolidation in three of four of the calves from which CD8+ T cells were depleted. This study shows that CD8+ T cells play a dominant role in the recovery of calves from RSV infection.  相似文献   

8.
Most human immunodeficiency virus (HIV) type 1 infections occur by the mucosal route. Thus, it is important to assess the immune responses to HIV in the vaginal, cervical, and rectal compartments. Here we quantitated the virus-specific CD8+ T-cell response and characterized the phenotype of lymphocytes in the genital tracts of naive macaques, macaques acutely or chronically infected with simian immunodeficiency virus SIVmac251, and macaques chronically infected with chimeric simian/human immunodeficiency virus SHIV(KU2.) Vaginal biopsy samples or samples obtained at the time of euthanasia were used in this analysis. The percentage of Gag-specific, tetramer-positive T cells was as high as 13 to 14% of the CD3+ CD8+ T-cell population in the vaginal and cervical laminae propriae of both SIVmac251 and SHIV(KU2) chronically infected macaques. In most cases, the frequency of this response in the cervicovaginal compartment far exceeded the frequency in the blood or the draining iliac lymph node. Vaginal laminae propriae of naive macaques contained 55 to 65% CD3+ CD8+ cells and 28 to 34% CD3+ CD4+ cells, while the majority of intraepithelial cells were CD8+ T cells (75 to 85%). For the same cells, the surface expression of CD62L was low whereas that of alphaEbeta7 was high. No difference in the expression of CD45RA on CD8+ T cells was observed in the chronic stage of SIVmac251 infection. Although no decrease in the percentage of CD4+ cells in the genital tract was observed within the first 12 days of infection, by 6 weeks from SIVmac251 infection and thereafter the percentage of CD4+ T cells was decreased in the laminae propriae of the vagina and cervix. Expression of CD45RA did not differ in naive and acutely SIVmac251 infected macaques. Information on the quality and quantity of local immune responses may help in the design of vaccine strategies aimed at containing viral replication at the site of viral encounter.  相似文献   

9.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

10.
Single Ag-specific CD8+ T cells from IFN-gamma-deficient (GKO) or perforin-deficient (PKO) mice provide substantial immunity against murine infection with Listeria monocytogenes. To address the potential for redundancy between perforin and IFN-gamma as CD8+ T cell effector mechanisms, we generated perforin/IFN-gamma (PKO/GKO) double-deficient mice. PKO/GKO-derived CD8+ T cells specific for the immunodominant listeriolysin O (LLO91-99) epitope provide immunity to LM infection similar to that provided by Ag-matched wild-type (WT) CD8+ T cells in the liver but reduced in the spleen. Strikingly, polyclonal CD8+ T cells from immunized PKO/GKO mice were approximately 100-fold more potent in reducing bacterial numbers than the same number of polyclonal CD8+ T cells from immunized WT mice. This result is probably quantitative, because the frequency of the CD8+ T cell response against the immunodominant LLO91-99 epitope is >4.5-fold higher in PKO/GKO mice than WT mice at 7 days after identical immunizations. Moreover, PKO/GKO mice can be immunized by a single infection with attenuated Listeria to resist >80,000-fold higher challenges with virulent organisms than naive PKO/GKO mice. These data demonstrate that neither perforin nor IFN-gamma is required for the development or expression of adaptive immunity to LM. In addition, the results suggest the potential for perforin and IFN-gamma to regulate the magnitude of the CD8+ T cell response to infection.  相似文献   

11.
Because the chemokine receptor CCR5 is expressed on Th1 CD4(+) cells, it is important to investigate the expression and function of this receptor on other T cells involved in Th1 immune responses, such as Ag-specific CD8(+) T cells, which to date have been only partially characterized. Therefore, we analyzed the expression and function of CCR5 on virus-specific CD8+ T cells identified by HLA class I tetramers. Multicolor flow cytometry analysis demonstrated that CCR5 is expressed on memory (CD28+CD45RA-) and effector (CD28-CD45RA- and CD28-CD45RA+) CD8+ T cells but not on naive (CD28+CD45RA+) CD8+ T cells. CCR5 expression was much lower on two effector CD8+ T cells than on memory CD8+ T cells. Analysis of CCR7 and CCR5 expression on the different types of CD8+ T cells showed that memory CD8+ T cells have three phenotypic subsets, CCR5+CCR7-, CCR5+CCR7+, and CCR5-CCR7+, while naive and effector CD8+ T cells have CCR5-CCR7+ and CCR5+CCR7- phenotypes, respectively. These results suggest the following sequence for differentiation of memory CD8+ T cells: CCR5-CCR7+-->CCR5+CCR7+-->CCR5+CCR7-. CCR5+CD8+ T cells effectively migrated in response to RANTES, suggesting that CCR5 plays a critical role in the migration of Ag-specific effector and differentiated memory CD8+ T cells to inflammatory tissues and secondary lymphoid tissues. This is in contrast to CCR7, which functions as a homing receptor in migration of naive and memory CD8+ T cells to secondary lymphoid tissues.  相似文献   

12.
Within murine CD11c(+) dendritic cells (DC), CD8alpha+, CD8alpha-CD4+, and CD8alpha-CD4- subsets are defined. This study characterized the localization, number, and function of these subsets during acute Salmonella typhimurium infection. Immunohistochemical and flow cytometric analyses of spleens from mice orally infected with virulent S. typhimurium revealed that in situ redistribution and alteration in the absolute number and function of DC occurred in a subset-specific manner during infection. CD8alpha-CD4+ DC present at B cell follicle borders in the spleen of naive mice were absent 5 days post-Salmonella infection, despite no overall change in the absolute number of CD8alpha-CD4+ splenic DC. CD8alpha+ and CD8alpha-CD4- DC were prominently associated with the red pulp, and the frequency of these cells increased strikingly 5 days post-Salmonella infection. Significant quantitative increases in both CD8alpha+ and CD8alpha-CD4- subsets were associated with the in situ redistribution. Examination of Salmonella-infected TAP1(-/-)/beta(2)-microglobulin(-/-) mice, which lack CD8alpha+ T cells, confirmed the differential subset-specific modulations in the DC populations both in situ and quantitatively. Ex vivo intracellular cytokine analysis showed significantly increased frequencies of CD8alpha(+) DC producing TNF-alpha at days 2 and 5 postinfection. In contrast, CD4+ DC producing TNF-alpha were transiently increased followed by a significant reduction. No significant increase in IL-12p40 or IL-10 production by splenic DC was detected during the first 5 days post-S. typhimurium infection. Together these data reveal differential modulation of splenic DC subsets with regard to organization, number, and cytokine production during the course of acute Salmonella infection.  相似文献   

13.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

14.
In mouse models of influenza, T cells can confer broad protection against multiple viral subtypes when antibodies raised against a single subtype fail to do so. However, the role of T cells in protecting humans against influenza remains unclear. Here we employ a translational nonhuman primate model to show that cross-reactive T cell responses play an important role in early clearance of infection with 2009 pandemic H1N1 influenza virus (H1N1pdm). To "prime" cellular immunity, we first infected 5 rhesus macaques with a seasonal human H1N1 isolate. These animals made detectable cellular and antibody responses against the seasonal H1N1 isolate but had no neutralizing antibodies against H1N1pdm. Four months later, we challenged the 5 "primed" animals and 7 naive controls with H1N1pdm. In naive animals, CD8+ T cells with an activated phenotype (Ki-67+ CD38+) appeared in blood and lung 5-7 days post inoculation (p.i.) with H1N1pdm and reached peak magnitude 7-10 days p.i. In contrast, activated T cells were recruited to the lung as early as 2 days p.i. in "primed" animals, and reached peak frequencies in blood and lung 4-7 days p.i. Interferon (IFN)-γ Elispot and intracellular cytokine staining assays showed that the virus-specific response peaked earlier and reached a higher magnitude in "primed" animals than in naive animals. This response involved both CD4+ and CD8+ T cells. Strikingly, "primed" animals cleared H1N1pdm infection significantly earlier from the upper and lower respiratory tract than the naive animals did, and before the appearance of H1N1pdm-specific neutralizing antibodies. Together, our results suggest that cross-reactive T cell responses can mediate early clearance of an antigenically novel influenza virus in primates. Vaccines capable of inducing such cross-reactive T cells may help protect humans against severe disease caused by newly emerging pandemic influenza viruses.  相似文献   

15.
The importance of IFN-gamma in regulating the host CD8+ T cell response during microbial infection has not been delineated. Mice deficient for the p40 chain of the IL-12 heterodimer have impaired IFN-gamma production and are susceptible to infection with the intracellular parasite Toxoplasma gondii. The administration of exogenous IFN-gamma to parasite-infected p40-/- mice increases survival and up-regulates the depressed CD8+ T cell response following infection. CD8+ T cells isolated from cytokine-treated p40-/- mice exhibit an increase in both precursor CTL frequency and IFN-gamma production compared with untreated controls. The enhancement of the CD8+ T cell response is independent of CD4+ T cell help. These CD8+ T cells induce protective immunity against a lethal challenge when adoptively transferred into naive p40-/- and IFN-gamma-/- mice. These observations indicate that IFN-gamma can regulate the CD8+ T cell response during T. gondii infection.  相似文献   

16.
Chemokines play a profound role in leukocyte trafficking and the development of adaptive immune responses. Perhaps due to their importance in host defense, viruses have adopted many of the hallmarks displayed by chemokines. In particular, viral MIP-II (vMIP-II) is a human chemokine homologue that is encoded by human herpes virus 8. vMIP-II is angiogenic, selectively chemotactic for Th2 lymphocytes, and a homologue of human I-309 and mouse TCA-3, which also differentially attracts Th2 cells. To better understand the effect of viral chemokines on mucosal immunity, we compared the affects of vMIP-II, I-309, and TCA-3 on cellular and humoral immune responses after nasal immunization with OVA. These CCR8 ligands significantly enhanced Ag-specific serum and mucosal Abs through increasing Th2 cytokine secretion by CD4+ T cells. These alterations in adaptive humoral and cellular responses were preceded (12 h after immunization) by an increase in CD4+ T and B cells in nasal tracts with decreases of these leukocyte populations in the lung. Interestingly, vMIP-II increased neutrophil infiltration in the lung and Ag-specific IL-10-secreting CD4+ T cells after immunization. Although I-309 increased the number of CD28-, CD40L-, and CD30-positive, Ag-stimulated naive CD4+ T cells, vMIP-II and TCA-3 decreased the number of CD28-, CD40L-, and CD30-positive, resting naive CD4+ T cells. Taken together, these studies suggest that CCR8 ligands direct host Th2 responses, and vMIP-II up-regulates IL-10 responses and limits costimulatory molecule expression to mitigate host immunity.  相似文献   

17.
The role of costimulation has previously been confined to the very early stages of the CD8+ T cell response. In this study, we demonstrate the requirement for CD27 costimulation during the later phase, but not programming of the primary CD8+ T cell response to influenza virus and reveal a novel mechanism of action for CD27 costimulation. CD27 signals, during the later phase of the primary CD8+ T cell response, prevent apoptosis of Ag-specific CD8+ T cells. Blocking CD27L (CD70) on days 6 and 8 after infection reduces the number of NP(366-374)-specific CD8+ T cells, increases their sensitivity to CD95/Fas-mediated apoptosis, and up-regulates FasL on CD4+ T cells. This reduction of NP(366-374)-specific CD8+ T cells requires the presence of CD4+ T cells and Fas signaling. Lack of CD27 signals also decreases the quality of memory CD8+ T cell responses. Memory CD8+ T cells, which express surface CD27 similar to naive cells, however, do not require CD27 costimulation during a secondary response. Thus, CD27 acts indirectly to regulate primary Ag-specific CD8+ T cell responses by preventing apoptosis of CD8+ T cells during the later phase of the primary response and is required for optimal quality of memory cells, but is not required during normally primed secondary CD8+ T cell responses.  相似文献   

18.
The T cell response to infection consists of clonal expansion of effector cells, followed by contraction to memory levels. It was previously thought that the duration of infection determines the magnitude and kinetics of the T cell response. However, recent analysis revealed that transition between the expansion and contraction phases of the Ag-specific CD8+ T cell response is not affected by experimental manipulation in the duration of infection or Ag display. We studied whether the duration of infection and Ag display influenced the kinetics of the Ag-specific CD4+ T cell response to Listeria monocytogenes (LM) infection. We found that truncating infection and Ag display with antibiotic treatment as early as 24 h postinfection had minimal impact on the expansion or contraction of CD4+ T cells; however, the magnitudes of the Ag-specific CD4+ and CD8+ T cell responses were differentially affected by the timing of antibiotic treatment. Treatment of LM-infected mice with antibiotics at 24 h postinfection did not prevent generation of detectable CD4+ and CD8+ memory T cells at 28 days after infection, vigorous secondary expansion of these memory T cells, or protection against a subsequent LM challenge. These results demonstrate that events within the first few days of infection stimulate CD4+ and CD8+ T cell responses that are capable of carrying out the full program of expansion and contraction to functional memory, independently of prolonged infection or Ag display.  相似文献   

19.
Human cytomegalovirus (HCMV) imprints the immune system after primary infection, however its effect during chronic infection still needs to be deciphered. In this study we report the variation of blood cell count along with anti-HCMV IgG and T cell responses to pp-65 and IE-1 antigens, that occurred after an interval of five years in a cohort of 25 seropositive healthy adults. We found increased anti-viral IgG antibody responses and intracellular interferon-gamma secreting CD8+ T cell responses to pp-65: a result consistent with memory inflation. With the only exception of shortage in naive CD8+ T cells most memory T cell subsets as well as total CD8+ T cells, T cells, lymphocytes, monocytes and leukocytes had increased. By contrast, none of the cell types tested were found to have increased in 14 subjects stably seronegative. Rather, in addition to a shortage in naive CD8+ T cells, also memory T cell subsets and most other cell types decreased, either in a statistically significant or non-significant manner. The trend of T cell pool representation with regard to CD4/CD8 ratio was in the opposing directions depending on HCMV serology. Globally, this study demonstrates different dynamic changes of most blood cell types depending on presence or absence of HCMV infection. Therefore, HCMV plays a continual role in modulating homeostasis of blood T cells and a broader expanding effect on other cell populations of lymphoid and myeloid origin.  相似文献   

20.
We have recently shown that CD8+ T cells mediate clearance of rotavirus infection in mice. B-cell-deficient J(H)D knockout (-/-) mice depleted of CD8+ T cells become chronically infected with murine rotavirus, and beta2 microglobulin -/- and other mice depleted of CD8+ T cells have a 1- to 4-day delay in clearance of primary rotavirus infection. A role for CD8+ T cells in protection from reinfection with rotavirus was suggested by these studies, because J(H)D -/- mice rechallenged 6 to 8 weeks after primary infection shed smaller quantities of viral antigen and for fewer days than naive mice. Here we show that 8, 11, 13, and 18 days after primary infection the J(H)D -/- mice are almost completely resistant to reinfection and that they are still partially protected from reinfection 6 weeks, 5 months, and 8 months after primary infection. Protection against reinfection was dependent on CD8+ T cells, since J(H)D -/- mice depleted of CD8+ T cells by administration of an anti-CD8 monoclonal antibody became chronically infected with rotavirus upon rechallenge 13 days, 18 days, 6 weeks, and 5 months after primary infection. Thus, CD8+ T cells can actively mediate almost complete short-term and partial long-term protection from reinfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号