首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In higher plants, microtubules (MTs) show dynamic structural changes during cell cycle and development progression. A precise control of MT nucleation at dispersed sites is one way used to regulate the cytoskeletal organization. Some gamma-tubulin complex proteins (GCPs) were previously identified in Arabidopsis thaliana (At). They are directly involved in the nucleation process. Nevertheless, no additional player which may anchor the nucleating complex or regulate the nucleation activity has been found in plant cells so far. Therefore, our aim was the identification of Arabidopsis proteins interacting with MT nucleating complexes and particularly with AtGCP3. Performing a yeast two-hybrid screen, we discovered a new protein which we called AtGCP3 Interacting Protein 1 (AtGIP1). The possible role of this protein during the nucleation process is discussed.  相似文献   

2.
The gamma-tubulin complex is a large multiprotein complex that is required for microtubule nucleation at the centrosome. Here we report the purification and characterization of the human gamma-tubulin complex and the identification of its subunits. The human gamma-tubulin complex is a ring of ~25 nm, has a subunit structure similar to that reported for gamma-tubulin complexes from other species, and is able to nucleate microtubule polymerization in vitro. Mass spectrometry analysis of the human gamma-tubulin complex components confirmed the presence of four previously identified components (gamma-tubulin and gamma-tubulin complex proteins [GCPs] 2, 3, and 4) and led to the identification of two new components, GCP5 and GCP6. Sequence analysis revealed that the GCPs share five regions of sequence similarity and define a novel protein superfamily that is conserved in metazoans. GCP5 and GCP6, like other components of the gamma-tubulin complex, localize to the centrosome and associate with microtubules, suggesting that the entire gamma-tubulin complex takes part in both of these interactions. Stoichiometry experiments revealed that there is a single copy of GCP5 and multiple copies of gamma-tubulin, GCP2, GCP3, and GCP4 within the gamma-tubulin complex. Thus, the gamma-tubulin complex is conserved in structure and function, suggesting that the mechanism of microtubule nucleation is conserved.  相似文献   

3.
A microtubule nucleates from a γ-tubuUn complex, which consists of γ-tubulin, proteins from the SPC971SPC98 family, and the WD40 motif protein GCP-WD. We analyzed the phylogenetic relationships of the genes encoding these proteins and found that the components of this complex are widely conserved among land plants and other eukaryotes. By contrast, the interphase and mitotic arrays of microtubules in land plants differ from those in other eukaryotes. In the interphase cortical array, the majority of microtubules nucleate on existing microtubules in the absence of conspicuous microtubule organizing centers (MTOCs), such as a centrosome. During mitosis, the spindle also forms in the absence of conspicuous MTOCs. Both poles of the spindle are broad, and branched structures of microtubules called microtubule converging centers form at the poles. In this review, we hypothesize that the microtubule converging centers form via microtubule-dependent microtubule nucleation, as in the case of the interphase arrays. The evolutionary insights arising from the molecular basis of the diversity in microtubule organization are discussed.  相似文献   

4.
Abstract: γ-Tubulin is a protein found in all eukaryotic cells, where it plays a key role in the nucleation of microtubules. In higher plant cells, γ-tubulin is localized at the nuclear surface, a known microtubule-organizing centre, and is codistributed with all microtubule arrays. Functions of plant γ-tubulin remain to be determined. This study describes some properties of higher plant γ-tubulin. The overall level of γ-tubulin was constant during the cell cycle in synchronized tobacco BY-2 cells. Biochemical analysis of the subcellular distribution of γ-tubulin in maize cells revealed that, in contrast with animal γ-tubulin, plant γ-tubulin is mainly associated with endomembranes. We showed for the first time that the pool of soluble cytosolic γ-tubulin contained two main γ-tubulin complexes. γ-tubulin, Hsp70 and TCP1-related proteins might interact in a small complex of 750 kDa. A second γ-tubulin complex, larger than 1500 kDa was purified. The protein profile of this large complex was very similar to animal γ-tubulin complexes. The putative functions of these two complexes in plant microtubule nucleation are discussed.  相似文献   

5.
The role of the centrosomes in microtubule nucleation remains largely unknown at the molecular level. gamma-Tubulin and the two associated proteins h103p (hGCP2) and h104p (hGCP3) are essential. These proteins are also present in soluble complexes containing additional polypeptides. Partial sequencing of a 76- kD polypeptide band from these complexes allowed the isolation of a cDNA encoding for a new protein (h76p = hGCP4) expressed ubiquitously in mammalian tissues. Orthologues of h76p have been characterized in Drosophila and in the higher plant Medicago. Several pieces of evidence indicate that h76p is involved in microtubule nucleation. (1) h76p is localized at the centrosome as demonstrated by immunofluorescence. (2) h76p and gamma-tubulin are associated in the gamma-tubulin complexes. (3) gamma-tubulin complexes containing h76p bind to microtubules. (4) h76p is recruited to the spindle poles and to Xenopus sperm basal bodies. (5) h76p is necessary for aster nucleation by sperm basal bodies and recombinant h76p partially replaces endogenous 76p in oocyte extracts. Surprisingly, h76p shares partial sequence identity with human centrosomal proteins h103p and h104p, suggesting a common protein core. Hence, human gamma-tubulin appears associated with at least three evolutionary related centrosomal proteins, raising new questions about their functions at the molecular level.  相似文献   

6.
In simple epithelial cells, attachment of microtubule-organizing centers (MTOCs) to intermediate filaments (IFs) enables their localization to the apical domain. It is released by cyclin-dependent kinase (Cdk)1 phosphorylation. Here, we identified a component of the gamma-tubulin ring complex, gamma-tubulin complex protein (GCP)6, as a keratin partner in yeast two-hybrid assays. This was validated by binding in vitro of both purified full-length HIS-tagged GCP6 and a GCP6(1397-1819) fragment to keratins, and pull-down with native IFs. Keratin binding was blocked by Cdk1-mediated phosphorylation of GCP6. GCP6 was apical in normal enterocytes but diffuse in K8-null cells. GCP6 knockdown with short hairpin RNAs (shRNAs) in CACO-2 cells resulted in gamma-tubulin signal scattered throughout the cytoplasm, microtubules (MTs) in the perinuclear and basal regions, and microtubule-nucleating activity localized deep in the cytoplasm. Expression of a small fragment GCP6(1397-1513) that competes binding to keratins in vitro displaced gamma-tubulin from the cytoskeleton and resulted in depolarization of gamma-tubulin and changes in the distribution of microtubules and microtubule nucleation sites. Expression of a full-length S1397D mutant in the Cdk1 phosphorylation site delocalized centrosomes. We conclude that GCP6 participates in the attachment of MTOCs to IFs in epithelial cells and is among the factors that determine the peculiar architecture of microtubules in polarized epithelia.  相似文献   

7.
Microtubule assembly is initiated by the gamma-tubulin ring complex (gamma-TuRC). In yeast, the microtubule is nucleated from gamma-TuRC anchored to the amino-terminus of the spindle pole body component Spc110p, which interacts with calmodulin (Cmd1p) at the carboxy-terminus. However, mammalian protein that anchors gamma-TuRC remains to be elucidated. A giant coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was localized to the centrosome via the carboxyl-terminal region. This region was found to interact with calmodulin by yeast two-hybrid screening, and it shares high homology with the carboxyl-terminal region of another centrosomal coiled-coil protein, kendrin. The amino-terminal region of either CG-NAP or kendrin indirectly associated with gamma-tubulin through binding with gamma-tubulin complex protein 2 (GCP2) and/or GCP3. Furthermore, endogenous CG-NAP and kendrin were coimmunoprecipitated with each other and with endogenous GCP2 and gamma-tubulin, suggesting that CG-NAP and kendrin form complexes and interact with gamma-TuRC in vivo. These proteins were localized to the center of microtubule asters nucleated from isolated centrosomes. Pretreatment of the centrosomes by antibody to CG-NAP or kendrin moderately inhibited the microtubule nucleation; moreover, the combination of these antibodies resulted in stronger inhibition. These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC.  相似文献   

8.
Glycogen synthase kinase-3beta (GSK-3beta) is known to play a role in the regulation of the dynamics of microtubule networks in cells. Here we show the role of GSK-3beta in the proper formation of the mitotic spindles through an interaction with GCP5, a component of the gamma-tubulin ring complex (gammaTuRC). GCP5 bound directly to GSK-3beta in vitro, and their interaction was also observed in intact cells at endogenous levels. Depletion of GCP5 dramatically reduced the GCP2 and gamma-tubulin in the gammaTuRC fraction of sucrose density gradients and disrupted gamma-tubulin localization to the spindle poles in mitotic cells. GCP5 appears to be required for the formation or stability of gammaTuRC and the recruitment of gamma-tubulin to the spindle poles. A GSK-3 inhibitor not only led to the accumulation of gamma-tubulin and GCP5 at the spindle poles but also enhanced microtubule nucleation activity at the spindle poles. Depletion of GCP5 rescued this disrupted organization of spindle poles observed in cells treated with the GSK-3 inhibitor. Furthermore, the inhibition of GSK-3 enhanced the binding of gammaTuRC to the centrosome isolated from mitotic cells in vitro. Our findings suggest that GSK-3beta regulates the localization of gammaTuRC, including GCP5, to the spindle poles, thereby controlling the formation of proper mitotic spindles.  相似文献   

9.
Microtubules (MTs) are crucial for both the establishment of cellular polarity and the progression of all mitotic phases leading to karyokinesis and cytokinesis. MT organization and spindle formation rely on the activity of γ-tubulin and associated proteins throughout the cell cycle. To date, the molecular mechanisms modulating γ-tubulin complex location remain largely unknown. In this work, two Arabidopsis thaliana proteins interacting with gamma-tubulin complex protein3 (GCP3), GCP3-interacting protein1 (GIP1) and GIP2, have been characterized. Both GIP genes are ubiquitously expressed in all tissues analyzed. Immunolocalization studies combined with the expression of GIP-green fluorescent protein fusions have shown that GIPs colocalize with γ-tubulin, GCP3, and/or GCP4 and reorganize from the nucleus to the prospindle and the preprophase band in late G2. After nuclear envelope breakdown, they localize on spindle and phragmoplast MTs and on the reforming nuclear envelope of daughter cells. The gip1 gip2 double mutants exhibit severe growth defects and sterility. At the cellular level, they are characterized by MT misorganization and abnormal spindle polarity, resulting in ploidy defects. Altogether, our data show that during mitosis GIPs play a role in γ-tubulin complex localization, spindle stability and chromosomal segregation.  相似文献   

10.
Gamma-tubulin complexes and microtubule organization   总被引:6,自引:0,他引:6  
Microtubule nucleation requires gamma-tubulin, which exists in two main protein complexes: the gamma-tubulin small complex, and the gamma-tubulin ring complex. During mitosis, these complexes accumulate at the centrosome to support spindle formation. Gamma-tubulin complexes are also present at non-centrosomal microtubule nucleation sites, both in interphase and in mitosis. In interphase, non-centrosomal nucleation enables the formation of microtubule bundles or networks of branched microtubules. Gamma-tubulin complexes may be involved not only in microtubule nucleation, but also in regulating microtubule dynamics. Recent findings indicate that the dynamics of microtubule plus-ends are altered, depending on the expression of gamma-tubulin complex proteins.  相似文献   

11.
Microtubule nucleation in interphase plant cells primarily occurs through branching from pre-existing microtubules at dispersed sites in the cell cortex. The minus ends of new microtubules are often released from the sites of nucleation, and the free microtubules are then transported to new locations by polymer treadmilling. These nucleation-and-release events are characteristic features of plant arrays in interphase cells, but little is known about the spatiotemporal control of these events by nucleating protein complexes. We visualized the dynamics of two fluorescently-tagged γ-tubulin complex proteins, GCP2 and GCP3, in Arabidopsis thaliana. These probes labelled motile complexes in the cytosol that transiently stabilized at fixed locations in the cell cortex. Recruitment of labelled complexes occurred preferentially along existing cortical microtubules, from which new microtubule was synthesized in a branching manner, or in parallel to the existing microtubule. Complexes localized to microtubules were approximately 10-fold more likely to display nucleation than were complexes recruited to other locations. Nucleating complexes remained stable until daughter microtubules were either completely depolymerized from their plus ends or released by katanin-dependent severing activity. These observations suggest that the nucleation complexes are primarily activated on association with microtubule lattices, and that nucleation complex stability depends on association with daughter microtubules and is regulated in part by katanin activity.  相似文献   

12.
A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of gamma-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with gamma-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring gamma-tubulin to the centrosome and organizing microtubule-nucleating sites via its interaction with the COOH-terminal sequence of CNN.  相似文献   

13.
Cytoplasmic dynein is known to be involved in the establishment of radial microtubule (MT) arrays. During mitosis, dynein activity is required for tethering of the MTs at the spindle poles. In interphase cells, dynein inhibitors induce loss of radial MT organization; however, the exact role of dynein in the maintenance of MT arrays is unclear. Here, we examined the effect of dynein inhibitors on MT distribution and the centrosome protein composition in cultured fibroblasts. We found that while these inhibitors induced rapid ( t 1/2 ∼ 20 min) loss of radial MT organization, the levels of key centrosomal proteins or the rates of MT nucleation did not change significantly in dynein-inhibited cells, suggesting that the loss of dynein activity does not affect the structural integrity of the centrosome or its capacity to nucleate MTs. Live observations of the centrosomal activity showed that dynein inhibition enhanced the detachment of MTs from the centrosome. We conclude that the primary role of dynein in the maintenance of a radial MT array in interphase cells consists of retention of MTs at the centrosome and hypothesize that dynein has a role in the MT retention, separate from the delivery to the centrosome of MT-anchoring proteins.  相似文献   

14.
The mechanism for forming linear microtubule (MT) arrays in cells such as neurons, polarized epithelial cells, and myotubes is not well understood. A simpler bipolar linear array is the fission yeast interphase MT bundle, which in its basic form contains two MTs that are bundled at their minus ends. Here, we characterize mto2p as a novel fission yeast protein required for MT nucleation from noncentrosomal gamma-tubulin complexes (gamma-TuCs). In interphase mto2Delta cells, MT nucleation was strongly inhibited, and MT bundling occurred infrequently and only when two MTs met by chance in the cytoplasm. In wild-type 2, we observed MT nucleation from gamma-TuCs bound along the length of existing MTs. We propose a model on how these nucleation events can more efficiently drive the formation of bipolar MT bundles in interphase. Key to the model is our observation of selective antiparallel binding of MTs, which can both explain the generation and spatial separation of multiple bipolar bundles.  相似文献   

15.
Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes.  相似文献   

16.
gamma-Tubulin plays an essential role in microtubule nucleation and organization and occurs, besides its centrosomal localization, in the cytosol, where it forms soluble complexes with other proteins. We investigated the size and composition of gamma-tubulin complexes in Dictyostelium, using a mutant cell line in which the endogenous copy of the gamma-tubulin gene had been replaced by a tagged version. Dictyostelium gamma-tubulin complexes were generally much smaller than the large gamma-tubulin ring complexes found in higher organisms. The stability of the small Dictyostelium gamma-tubulin complexes depended strongly on the purification conditions, with a striking stabilization of the complexes under high salt conditions. Furthermore, we cloned the Dictyostelium homolog of Spc97 and an almost complete sequence of the Dictyostelium homolog of Spc98, which are both components of gamma-tubulin complexes in other organisms. Both proteins localize to the centrosome in Dictyostelium throughout the cell cycle and are also present in a cytosolic pool. We could show that the prevailing small complex present in Dictyostelium consists of DdSpc98 and gamma-tubulin, whereas DdSpc97 does not associate. Dictyostelium is thus the first organism investigated so far where the three proteins do not interact stably in the cytosol.  相似文献   

17.
To understand the mechanism of the very slow block to polyspermy in physiologically polyspermic eggs of the newt Cynops pyrrhogaster, we used confocal laser microscopy to determine the distribution of gamma-tubulin and cyclin B1 in fertilized eggs. More gamma-tubulin was localized in the animal hemisphere than in the vegetal. The centrosomes of the principal sperm nucleus and the zygote nucleus had much accumulated gamma-tubulin, but little gamma-tubulin was associated with the centrosomes of the accessory sperm nuclei. These results are consistent with observations that the largest sperm aster is associated with the principal sperm nucleus. More cyclin B1 appeared in the animal hemisphere than in the vegetal at the end of interphase. The zygote nucleus had much accumulated cyclin B1, but little cyclin B1 was associated with the accessory sperm nuclei. Cyclin B1 disappeared earlier around the zygote nucleus at metaphase than around the accessory sperm nuclei. These findings correspond well with the earlier entry and exit into metaphase in the zygote nucleus than in the accessory sperm nuclei in newt eggs, supporting our maturation-promoting factor (MPF) model that accounts for the mechanism of nuclear degeneration in physiologically polyspermic eggs. Cyclin B1 began to accumulate in the nucleus during interphase in synchronous cleavage, and its greatest expression was in the centrosomes and the nucleus at prometaphase.  相似文献   

18.
Tange Y  Fujita A  Toda T  Niwa O 《Genetics》2004,167(3):1095-1107
In fission yeast, gamma-tubulin (encoded by the gtb1+ gene), Alp4 (Spc97/GCP2), and Alp6 (Spc98/GCP3) are essential components of the gamma-tubulin complex. We isolated gtb1 mutants as allele-specific suppressors of temperature-sensitive alp4 mutations. Mutation sites in gtb1 mutants and in several alp4 alleles were determined. The majority of substituted amino acids were mapped to a small area on the predicted surface of the gamma-tubulin molecule that might directly interact with the Alp4 protein. The cold sensitivity of gamma-tubulin mutants was almost completely suppressed by an alpha-tubulin mutation and partially suppressed by a low concentration of thiabendazole, a microtubule assembly inhibitor. Other gtb1 mutants had increased resistance to this drug. Gel-filtration and immunoprecipitation analyses suggested that the mutant gamma-tubulin formed an altered gamma-tubulin complex with increased stability compared to wild-type gamma-tubulin. In most gtb1 mutants, sexual development was impaired, and aberrant asci that contained an irregular spore shape and number were produced. In contrast, spore formation was not appreciably damaged in some alp4 and alp6 mutants, even at temperatures where vegetative proliferation was substantially defective. These results suggested that the function of the gamma-tubulin complex or the requirement of each component of the complex is differentially regulated between the vegetative and sexual phases of the life cycle in fission yeast. In addition, genetic data indicated intimate functional connections of gamma-tubulin with several kinesin-like proteins.  相似文献   

19.
The characterization of the two Paramecium gamma-tubulin genes, gammaPT1 and gammaPT2, allowed us to raise Paramecium-specific antibodies, directed against their most divergent carboxy-terminal peptide and to analyze the localization and dynamics of gamma-tubulin throughout the cell cycle. As in other cell types, a large proportion of the protein was found to be cytosolic, but in contrast to the general situation, gamma-tubulin was found to be permanently associated to four types of sites: basal bodies, the micronuclear compartment--within which mitotic and meiotic spindles develop without membrane breakdown, the pores of the contractile vacuoles and the cytoproct which are cortical microtubular organelles fulfilling excretory functions. In addition, a transient site of gamma-tubulin and microtubule assembly was observed at the site of nuclear exchange during conjugation. This complexity accounts for the nucleation of most of the numerous and diverse microtubule arrays present in Paramecium. The sites and mode of nucleation of the microtubule bundles formed in the macronuclear compartment during division remain unclear. These observations lead us to discuss the relationships between microtubules, gamma-tubulin and MTOCs.  相似文献   

20.
γ-Tubulin is an essential component of the microtubule organizing center (MTOC) responsible for nucleating microtubules in both plants and animals. Whereas γ-tubulin is tightly associated with centrosomes that are inheritable organelles in cells of animals and most algae, it appears at different times and places to organize the myriad specialized microtubule systems that characterize plant cells. We have traced the distribution of γ-tubulin through the cell cycle in representative land plants (embryophytes) and herein present data that have led to a concept of the pleiomorphic and migratory MTOC. The many forms of the plant MTOC at spindle organization constitute pleiomorphism, and stage-specific “migration” is suggested by the consistent pattern of redistribution of γ-tubulin during mitosis. Mitotic spindles may be organized at centriolar centrosomes (only in final divisions of spermatogenesis), polar organizers (POs), plastid MTOCs, or nuclear envelope MTOCs (NE-MTOCs). In all cases, with the possible exception of centrosomes in spermatogenesis, the γ-tubulin migrates to broad polar regions and along the spindle fibers, even when it is initially a discrete polar entity. At anaphase it moves poleward, and subsequently migrates from polar regions (distal nuclear surfaces) into the interzone (proximal nuclear surfaces) where interzonal microtubule arrays and phragmoplasts are organized. Following cytokinesis, γ-tubulin becomes associated with nuclear envelopes and organizes radial microtubule systems (RMSs). These may exist only briefly, before establishment of hoop-like cortical arrays in vegetative tissues, or they may be characteristic of interphase in syncytial systems where they serve to organize the common cytoplasm into nuclear cytoplasmic domains (NCDs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号