首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated the two LysR-type regulatory proteins CatR1 and CatR2, which regulate the expression of cat1 and cat2 gene clusters, respectively, required for catechol degradation in the bacterium Frateuria sp. ANA-18. In a gel mobility shift assay using CatR1 and the DNA fragment containing the catB1 promoter region, the formation of two complexes, complex 1-1 (C1-1) and complex 1-2 (C1-2), was observed in the presence of cis, cis-muconate. On the other hand, CatR2 and the DNA fragment containing the catB2 promoter region formed only complex 2-2 (C2-2) at a lower concentration of cis, cis-muconate than that at which C1-1 and C1-2 were formed. As the concentration of cis, cis-muconate decreased, the production of the muconate cycloisomerase isozyme MC II encoded by catB2 decreased as well as that of MC I encoded by catB1. However, the amount of MC II synthesized was larger than that of MC I at low concentrations. On the basis of these results, we concluded that the catB2 promoter was activated at low concentrations of cis, cis-muconate.  相似文献   

2.
3.
In Pseudomonas putida, the catBC operon encodes enzymes involved in benzoate degradation. Previous studies have determined that these enzymes are induced when P. putida is grown in the presence of benzoate. Induction of the enzymes of the catBC operon requires an intermediate of benzoate degradation, cis,cis-muconate, and a regulatory protein, CatR. It has been determined that CatR binds to a 27-bp region of the catBC promoter in the presence or absence of inducer. We have called this the repression binding site. In this study, we used a gel shift assay to demonstrate that the inducer, cis,cis-muconate, increases the affinity of CatR for the catBC promoter region by 20-fold. Furthermore, in the absence of cis,cis-muconate, CatR forms two complexes in the gel shift assay. The inducer cis,cis-muconate confers specificity primarily for the formation of complex 2. DNase I footprinting showed that an additional 27 bp of the catBC promoter region is protected by CatR in the presence of cis,cis-muconate. We have named this second binding site the activation binding site. Methylation interference footprinting determined that in the presence or absence of inducer, five G nucleotides of the catBC promoter region were necessary for CatR interaction with the repression binding site, while a single G residue was important for CatR interaction with the activation binding site in the presence of cis,cis-muconate. Using polymerase chain reaction-generated constructs, we found that the binding of CatR to the repression binding site is independent of the activation binding site. However, binding of CatR to the activation binding site required an intact repression binding site.  相似文献   

4.
5.
6.
7.
The plasmid-borne pheBA operon of Pseudomonas putida strain PaW85 allows growth of the host cells on phenol. The promoter of this operon is activated by the chromosomally encoded LysR-type regulator CatR, in the presence of the inducer cis, cis-muconate. cis, cis -muconate is an intermediate of catechol degradation by the chromosomally encoded ortho or β-ketoadipate pathway. The catBC operon encodes two enzymes of the β-ketoadipate pathway and also requires CatR and cis, cis-muconate for its expression. The promoters of the pheBA and catBC operons are highly homologous, and since both respond to CatR, it is likely that the pheBA promoter was recruited from the ancestral catBC promoter. Gel shift assays and DNase I footprinting have shown that the pheBA promoter has a higher binding affinity for CatR than the catBC promoter. Like the catBC promoter, the pheBA promoter forms two complexes (C1 and C2) with CatR in the absence of cis, cis-muconate, but only forms a single complex (C2) in the presence of cis, cis-muconate. Like the catBC promoter CatR repression binding site (RBS) and activation binding site (ABS) arrangement, the pheBA promoter demonstrates the presence of a 26 bp segment highly homologous to the RBS that is protected by CatR from DNase I digestion in the absence of the inducer. An additional 16 bp sequence, similar to the catBC promoter ABS, is protected only when the inducer cis-cis-muconate is present. The binding of CatR in absence of cis, cis -muconate bends the catBC and pheBA promoter regions to significantly different degrees, but CatR binding in the presence of cis, cis-muconate results in a similar degree of DNA bending. The evolutionary implications of the interactions of CatR with these two promoters are discussed.  相似文献   

8.
9.
10.
11.
12.
A number of spontaneous mutant strains of Pseudomonas putida, obtained by repeated selection for inability to grow with cis,cis-muconate, have been shown to carry deletions in catB, the structural gene for muconate lactonizing enzyme. These strains have been employed for deletion mapping of the genetic region containing catB and catC (the structural gene for muconolactone isomerase, the synthesis of which is coordinate with that of muconate lactonizing enzyme). All deletions that overlap mutant sites located on the left side of the genetic map, as well as the point mutations in that region, lead to a pleiotropic loss of both catB and catC activities. We propose that this region to the left of catB has a regulatory function. Although the details of regulation at the molecular level are unclear, our data indicate that catB and catC may well be controlled by a mechanism unlike any yet described by workers on enteric bacteria.  相似文献   

13.
Two novel type I catechol 1,2-dioxygenases inducible on aniline media were isolated from Acinetobacter lwoffii K24. Although the two purified enzymes, CD I1 and CD I2, had similar intradiol cleavage activities, they showed different substrate specificities for catechol analogs, physicochemical properties, and amino acid sequences. Two catA genes, catA1 and catA2, encoding by CD I1 and CD I2, respectively, were isolated from the A. lwoffii K24 genomic library by using colony hybridization and PCR. Two DNA fragments containing the catA1 and catA2 genes were located on separate regions of the chromosome. They contained open reading frames encoding 33.4- and 30.4-kDa proteins. The amino acid sequences of the two proteins matched well with previously determined sequences. Interestingly, further analysis of the two DNA fragments revealed the locations of the catB and catC genes as well. Moreover, the DNA fragment containing catA1 had a cluster of genes in the order catB1-catC1-catA1 while the catB2-catA2-catC2 arrangement was found in the catA2 DNA fragment. These results may provide an explanation of the different substrate specificities and physicochemical properties of CD I1 and CD I2.  相似文献   

14.
A 302 bp DNA fragment and a 113 bp subfragment of the former, both containing the fd gene VIII promoter (P VIII), were found to exhibit temperature-dependent differential behaviour in RNA chain initiation from P VIII. At 37 degrees C no significant differences were observed, while at 17 degrees C chain initiation was strongly suppressed only with the 113 bp fragment. This phenomenon depended on the presence of the (blunt) DNA terminus upstream from P VIII (position -70). Footprinting revealed that at 17 degrees C RNA polymerase was bound to this DNA fragment in a different mode. Contacts were observed only upstream from position -25. On the contrary, at 37 degrees C only the promoter complex footprint was visible. These results indicate that at 17 degrees C formation of the non-initiating complex is more favourable than formation of the promoter complex (which is closed at 17 degrees C; Hofer, B., Müller, D. and K?ster, H. (1985) Nucleic Acids Res. 13, 5995-6013) and that formation of both complexes is mutually exclusive. No footprints of RNA polymerase were observed at other DNA termini. This indicates a sequence-specificity for the interaction at the terminus of the 113 bp fragment. The footprint pattern, together with features of the DNA sequence, suggests that the contacts involved in this interaction are similar to those promoter contacts formed upstream from position -20 and that DNA without a -10 region can be specifically recognized by RNA polymerase.  相似文献   

15.
16.
17.
This report describes the isolation and preliminary characterization of a 5.0-kilobase-pair (kbp) EcoRI DNA restriction fragment carrying the catBCDE genes from Acinetobacter calcoaceticus. The respective genes encode enzymes that catalyze four consecutive reactions in the catechol branch of the beta-ketoadipate pathway: catB, muconate lactonizing enzyme (EC 5.5.1.1); catC, muconolactone isomerase (EC 5.3.3.4); catD, beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24); and catE, beta-ketoadipate succinyl-coenzyme A transferase (EC 2.8.3.6). In A. calcoaceticus, pcaDE genes encode products with the same enzyme activities as those encoded by the respective catDE genes. In Pseudomonas putida, the requirements for both catDE and pcaDE genes are met by a single set of genes, designated pcaDE. A P. putida mutant with a dysfunctional pcaE gene was used to select a recombinant pKT230 plasmid carrying the 5.0-kbp EcoRI restriction fragment containing the A. calcoaceticus catE structural gene. The recombinant plasmid, pAN1, complemented P. putida mutants with lesions in catB, catC, pcaD, and pcaE genes; the complemented activities were expressed constitutively in the recombinant P. putida strains. After introduction into Escherichia coli, the pAN1 plasmid expressed the activities constitutively but at much lower levels that those found in the P. putida transformants or in fully induced cultures of A. calcoaceticus or P. putida. When placed under the control of a lac promoter on a recombinant pUC13 plasmid in E. coli, the A. calcoaceticus restriction fragment expressed catBCDE activities at levels severalfold higher than those found in fully induced cultures of A. calcoaceticus. Thus there is no translational barrier to expression of the A. calcoaceticus genes at high levels in E. coli. The genetic origin of the cloned catBCDE genes was demonstrated by the fact that the 5.0-kbp EcoRI restriction fragment hybridized with a corresponding fragment from wild-type A. calcoaceticus DNA. This fragment was missing in DNA from an A. calcoaceticus mutant in which the cat genes had been removed by deletion. The properties of the cloned fragment demonstrate physical linkage of the catBCDE genes and suggest that they are coordinately transcribed.  相似文献   

18.
19.
A 9.9-kilobase (kb) BamHI restriction endonuclease fragment encoding the catA and catBC gene clusters was selected from a gene bank of the Pseudomonas aeruginosa PAO1c chromosome. The catA, catB, and catC genes encode enzymes that catalyze consecutive reactions in the catechol branch of the beta-ketoadipate pathway: catA, catechol-1,2-dioxygenase (EC 1.13.11.1); catB, muconate lactonizing enzyme (EC 5.5.1.1); and catC, muconolactone isomerase (EC 5.3.3.4). A recombinant plasmid, pRO1783, which contains the 9.9-kb BamHI restriction fragment complemented P. aeruginosa mutants with lesions in the catA, catB, or catC gene; however, this fragment of chromosomal DNA did not contain any other catabolic genes which had been placed near the catA or catBC cluster based on cotransducibility of the loci. Restriction mapping, deletion subcloning, and complementation analysis showed that the order of the genes on the cloned chromosomal DNA fragment is catA, catB, catC. The catBC genes are tightly linked and are transcribed from a single promoter that is on the 5' side of the catB gene. The catA gene is approximately 3 kb from the catBC genes. The cloned P. aeruginosa catA, catB, and catC genes were expressed at basal levels in blocked mutants of Pseudomonas putida and did not exhibit an inducible response. These observations suggest positive regulation of the P. aeruginosa catA and catBC cluster, the absence of a positive regulatory element from pRO1783, and the inability of the P. putida regulatory gene product to induce expression of the P. aeruginosa catA, catB, and catC genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号