首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Putnam-Evans  T M Bricker 《Biochemistry》1992,31(46):11482-11488
The psbB gene encodes the intrinsic chlorophyll-a binding protein CPa-1 (CP-47), a component of photosystem II in higher plants, algae, and cyanobacteria. Oligonucleotide-directed mutagenesis was used to introduce mutations into a segment of the psbB gene encoding the large extrinsic loop region of CPa-1 in the cyanobacterium Synechocystis sp. PCC 6803. Altered psbB genes were introduced into a mutant recipient strain (DEL-1) of Synechocystis in which the genomic psbB gene had been partially deleted. Initial target sites for mutagenesis were absolutely conserved basic residue pairs occurring within the large extrinsic loop. One mutation, RR384385GG, produced a strain with impaired photosystem II activity. This strain exhibited growth characteristics comparable to controls. However, at saturating light intensities this mutant strain evolved oxygen at only 50% of the rate of the control strains. Quantum yield measurements at low light intensities indicated that the mutant had 30% fewer fully functional photosystem II centers than do control strains of Synechocystis. Immunological analysis of a number of photosystem II protein components indicated that the mutant accumulates normal quantities of photosystem II proteins and that the ratio of photosystem II to photosystem I proteins is comparable to that found in control strains. Upon exposure to high light intensities the mutant cells exhibited a markedly increased susceptibility to photoinactivation. However, Tris-treated thylakoid membranes from both the mutant and wild-type exhibited comparable rates of photoinactivation. Thylakoid membranes isolated from RR384385GG exhibited only 15% of the H2O to 2,6-dichlorophenolindophenol electron transport rate observed in wild-type strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The psbC gene encodes the intrinsic chlorophyll protein CP 43, a component of photosystem II in higher plants, green algae, and cyanobacteria. Oligonucleotide-directed mutagenesis was used to introduce mutations into the portion of psbC that encodes the large extrinsic loop E of CP 43 in the cyanobacterium Synechocystis 6803. Three mutations, E293Q, E339Q, and E352Q, each produced a strain with impaired photosystem II activity. The E293Q mutant strain grew photoautotrophically at rates comparable to the control strain. Immunological analyses of several PS II components indicated that this mutant accumulated normal quantities of PS II proteins. However, this mutant evolved oxygen to only 56% of control rates at saturating light intensities. Measurements of total variable fluorescence yield indicated that this mutant assembled approximately 60% of the fully functional PS II centers found in the control strain. The E339Q mutant grew photoautotrophically at a severely reduced rate. Both immunological analysis and variable fluorescence yield experiments indicated that E339Q assembled a normal complement of PS II centers. However, this mutant was capable of evolving oxygen to only 20% of control rates. Variable fluorescence yield experiments demonstrated that this mutant was inefficient at using water as an electron donor. Both E293Q and E339Q strains exhibited an increased (approximately 2-fold) sensitivity to photoinactivation. The E352Q mutant was the most severely affected. This mutant failed to grow photoautotrophically and exhibited essentially no capacity for oxygen evolution. Measurements of total variable fluorescence yield indicated that this mutant assembled no functional PS II centers. Immunological analysis of isolated thylakoid membranes from E352Q revealed a complete absence of CP 43 and reduced levels of both the D1 and manganese-stabilizing proteins. These results suggest that the mutations E293Q and E339Q each produce a defect associated with the oxygen-evolving complex of photosystem II. The E352Q mutation appears to affect the stability of the PS II complex. This is the first report showing that alteration of negatively charged residues in the CP 43 large extrinsic loop results in mutations affecting PS II assembly/function.  相似文献   

3.
A conditional respiratory deficiency in yeast Saccharomyces cerevisiae is expressed as a result of a nuclear mutation in sup1 and sup2 genes (II and IV chromosomes, respectively), coding for a component of cytoplasmic ribosomes (Ter-Avanesyan et al. 1982). One such strain is studied here in detail. The strain is temperature-dependent and expresses a respiratory deficient phenotype at 20 degrees C but not at 30 degrees C. Moreover, the strain is simultaneously chloramphenicol-dependent and is able to grow on media containing glycerol or ethanol as a sole carbon source only in the presence of the drug. Chloramphenicol has a differential effect on protein synthesis in mitochondria of the parent strain and the mutant. Since chloramphenicol is a ribosome-targeting antibiotic we suggest that the differential effect of the drug on parent and mutant mitochondrial protein synthesis is due to the altered properties of mito-ribosomes of the mutant compared to those of the parent strain. Mitochondria of the mutant synthesize all the mitochondrially encoded polypeptides, however, in significantly lowered amounts. A suggestion is put forward for the existence of a common component (a ribosomal protein) for mito and cyto-ribosomes.  相似文献   

4.
Activation of Inactive Nitrogenase by Acid-Treated Component I   总被引:19,自引:11,他引:8       下载免费PDF全文
When Azotobacter vinelandii was derepressed for nitrogenase synthesis in a N-free medium containing tungstate instead of molybdate, an inactive component I was synthesized. Although this inactive component I could be activated in vivo upon addition of molybdate to the medium, it could not be activated in vitro when molybdate was added to the extracts. Activation occurred, however, when an acid-treated component I was added to extracts of cells derepressed in medium containing tungstate. Acid treatment completely abolished component I activity. Mutant strains UW45 and UW10 were unable to fix N(2). Both strains synthesized normal levels of component II but produced inactive component I. Acid-treated component I activated inactive component I in extracts of mutant strain UW45 but not mutant strain UW10. This activating factor could be obtained from N(2)-fixing Klebsiella pneumoniae, Clostridium pasteurianum, and Rhodospirillum rubrum.  相似文献   

5.
A strain of Escherichia coli in which the glutamine amidotransferase function (anthranilate synthetase component II) of anthranilate synthetase has been deleted synthesizes tryptophan using NH3-dependent anthranilate synthetase component I (AS-I). In NH3-limited media this strain is a tryptophan auxotroph. Mutants that acquired the capacity to grow in NH3-limited media were isolated. Growth of mutant strains in NH3-limited media correlates with increased AS-I activity. Glutamine-dependent AS activity was not found in any of the mutant strains indicating that another glutamine amidotransferase had not been recruited to function with AS-I.  相似文献   

6.
The gene encoding the noncoupled NADH:ubiquinone oxidoreductase (NDH II) from Azotobacter vinelandii was cloned, sequenced, and used to construct an NDH II-deficient mutant strain. Compared to the wild type, this strain showed a marked decrease in respiratory activity. It was unable to grow diazotrophically at high aeration, while it was fully capable of growth at low aeration or in the presence of NH(4)(+). This result suggests that the role of NDH II is as a vital component of the respiratory protection mechanism of the nitrogenase complex in A. vinelandii. It was also found that the oxidation of NADPH in the A. vinelandii respiratory chain is catalyzed solely by NDH II.  相似文献   

7.
We constructed a sodA-disrupted mutant of Bacillus subtilis 168, BK1, by homologous recombination. The mutant was not able to grow in minimal medium without Mn(II). The spore-forming ability of strain BK1 was significantly lower in Mn(II)-depleted medium than that of the wild-type strain. These deleterious effects caused by the sodA mutation were reversed when an excess of Mn(II) was used to supplement the medium. Moreover, the growth inhibition by superoxide generators in strain BK1 and its parent strain was also reversed by the supplementation with excess Mn(II). We therefore estimated the Mn-dependent superoxide-scavenging activity in BK1 cells. Whereas BK1 cells have no detectable superoxide dismutase (Sod) on native gel, the superoxide-scavenging activity in crude extracts of BK1 cells grown in Mn(II)-supplemented LB medium (10 g of tryptone, 5 g of yeast extract, and 5 g of NaCl per liter) was significantly detected by the modified Sod assay method without using EDTA. The results obtained suggest that Mn, as a free ion or a complex with some cellular component, can catalyze the elimination of superoxide and that both SodA and Mn(II) are involved not only in the superoxide resistance of vegetative cells but also in sporulation.  相似文献   

8.
The intrinsic chlorophyll-protein CP 47 is a component of photosystem II which functions in both light-harvesting and oxygen evolution. Using site-directed mutagenesis we have produced the mutant W167S which lies in loop C of CP 47. This strain exhibited a 75% loss in oxygen evolution activity and grew extremely slowly in the absence of glucose. Examination of normalized oxygen evolution traces indicated that the mutant was susceptible to photoinactivation. Analysis of the variable fluorescence yield indicated that the mutant accumulated very few functional PS II reaction centers. This was confirmed by immunoblotting experiments. Interestingly, when W167S was grown in the presence of 20 M DCMU, the mutant continued to exhibit these defects. These results indicate that tryptophan 167 in loop C of CP 47 is important for the assembly and stability of the PS II reaction center.  相似文献   

9.
10.
Acyl carrier protein (ACP) is a key component of the fatty acid synthesis pathways of both type I and type II synthesis systems. A large number of structure-function studies of various type II ACPs have been reported, but all are in vitro studies that assayed function or interaction of mutant ACPs with various enzymes of fatty acid synthesis or transfer. Hence in these studies functional properties of various mutant ACPs were assayed with only a subset of the many ACP-interacting proteins, which may not give an accurate overall view of the function of these proteins in vivo. This is especially so because Escherichia coli ACP has been reported to interact with several proteins that have no known roles in lipid metabolism. We therefore tested a large number of mutant derivatives of E. coli ACP carrying single amino acid substitutions for their abilities to restore growth to an E. coli strain carrying a temperature-sensitive mutation in acpP, the gene that encodes ACP. Many of these mutant proteins had previously been tested in vitro thus providing data for comparison with our results. We found that several mutant ACPs containing substitutions of ACP residues reported previously to be required for ACP function in vitro support normal growth of the acpP mutant strain. However, several mutant proteins reported to be severely defective in vitro failed to support growth of the acpP strain in vivo (or supported only weak growth). A collection of ACPs from diverse bacteria and from three eukaryotic organelles was also tested. All of the bacterial ACPs tested restored growth to the E. coli acpP mutant strain except those from two related bacteria, Enterococcus faecalis and Lactococcus lactis. Only one of the three eukaryotic organellar ACPs allowed growth. Strikingly the ACP is that of the apicoplast of Plasmodium falciparum (the protozoan that causes malaria). The fact that an ACP from a such diverse organism can replace AcpP function in E. coli suggests that some of the protein-protein interactions detected for AcpP may be not be essential for growth of E. coli.  相似文献   

11.
The D1 protein is an integral component of the photosystem II reaction center complex. In the cyanobacterium Synechocystis sp. PCC 6803, D1 is synthesized with a short 16-amino acids-long carboxyl-terminal extension. Removal of this extension is necessary to form active oxygen-evolving photosystem II centers. Our earlier studies have shown that this extension is cleaved by CtpA, a specific carboxyl-terminal processing protease. The amino acid sequence of the carboxyl-terminal extension is conserved among D1 proteins from different organisms, although at a level lower than that of the mature protein. In the present study we have analyzed a mutant strain of Synechocystis sp. PCC 6803 with a duplicated extension, and a second mutant that lacks the extension, to investigate the effects of these alterations on the function of the D1 protein in vivo. No significant difference in the growth rates, photosynthetic pigment composition, fluorescence induction, and oxygen evolution rates was observed between the mutants and the control strain. However, using long-term mixed culture growth analysis, we detected significant decreases in the fitness of these mutant strains. The presented data demonstrate that the carboxyl-terminal extension of the precursor D1 protein is required for optimal photosynthetic performance.  相似文献   

12.
Two mutants of Bradyrhizobium sp. (Arachis) strain GN17 having altered lipopolysaccharide (LPS) composition were isolated upon random Tn5 mutagenesis to study their binding with peanut root lectin (PRA II). These mutant strains designated as GN17M1 and GN17M2 produced rough colonies and showed autoagglutination. Flow cytometric analyses indicated that strain GN17M1 bind to PRA II with highest efficiency. Both the mutants synthesized only high molecular weight lipopolysaccharides as observed by silver staining of polyacrylamide gel. The LPSs from both the mutants cross-reacted with anti-GN17 LPS, however, GN17M1 LPS showed 3 times higher cross-reactivity as detected by ELISA. Carbohydrate analysis by high performance anion exchange chromatography (HPAEC) showed that glucose was the major constituent of the purified LPS from the parent strain whereas mannose appeared as major component in the GN17M2 LPS. Equivalent amount of glucose and galactosamine with significant amount of mannose and galactose was the characteristics of the GN17M1 LPS. Purified LPS from GN17M1 and GN17M2 were respectively 17 and 10 times more potent inhibitors of PRA II activity than that of parent strain GN17. Similar binding efficiencies of the mutant LPS towards PRA II was also observed by ELISA. The results of this study indicate that the composition and the arrangement of the LPS are crucial for lectin binding.  相似文献   

13.
Planktonic cells of Sinorhizobium meliloti, a Gram-negative symbiotic bacterium, display autoaggregation under static conditions. ExpR is a LuxR-type regulator that controls many functions in S. meliloti, including synthesis of two exopolysaccharides, EPS I (succinoglycan) and EPS II (galactoglucan). Since exopolysaccharides are important for bacterial attachment, we studied the involvement of EPS I and II in autoaggregation of S. meliloti. Presence of an intact copy of the expR locus was shown to be necessary for autoaggregation. A mutant incapable of producing EPS I displayed autoaggregation percentage similar to that of parental strain, whereas autoaggregation was significantly lower for a mutant defective in biosynthesis of EPS II. Our findings clearly indicate that EPS II is the essential component involved in autoaggregation of planktonic S. meliloti cells, and that EPS I plays no role in such aggregation.  相似文献   

14.
A new acetate-requiring mutant strain of Neurospora crassa, ace-9, has been isolated. The mutant gene was mapped between nuc-2 and arg-12 on the right arm of the second linkage group. The ace-9 mutant strain shows very weak activity of pyruvate dehydrogenase complex (PDHC). Three strains that show no activity of PDHC had already been found, i.e., ace-2, ace-3, and ace-4. Thus the ace-9 is the fourth gene that causes the deficiency in PDHC activity by a mutation. Deficiency of PDHC activity in ace-9 strain seems to be due to defective E1 component, because (1) the activity of E1 component enzyme is very weak in ace-9 mutant strain, and (2) normal PDHC activity was resumed when a preparation of ace-9 was mixed with E1-E2 fraction of wild type or with E1 component of wild type E. coli. Difference in thermostability of both E1 component enzyme and PDHC between ace-9 and the wild type strains supports this conclusion.  相似文献   

15.
The 520 nm light-induced absorbance change in wild-type and 4 mutant strains of Chlamydomonas reinhardi was investigated. In the wild-type strain the absorbance change is composed of at least 2 components, P520 I and P520 II, sensitized by Systems I and II respectively. Some of the properties of these components can be studied by using the appropriate photosynthetic mutant strain. A group of mutant strains modified in the photochemical complex of System II shows only the P520 I absorbance change, whereas a mutant strain deficient in active P700 exhibits only the P520 II absorbance change. The possible relationship between these absorbance changes and the photosynthetic electron transport pathway is discussed.  相似文献   

16.
In previous studies it has been established that resistance to superoxide by Neisseria gonorrhoeae is dependent on the accumulation of Mn(II) ions involving the ABC transporter, MntABC. A mutant strain lacking the periplasmic binding protein component (MntC) of this transport system is hypersensitive to killing by superoxide anion. In this study the mntC mutant was found to be more sensitive to H2O2 killing than the wild-type. Analysis of regulation of MntC expression revealed that it was de-repressed under low Mn(II) conditions. The N. gonorrhoeae mntABC locus lacks the mntR repressor typically found associated with this locus in other organisms. A search for a candidate regulator of mntABC expression revealed a homologue of PerR, a Mn-dependent peroxide-responsive regulator found in Gram-positive organisms. A perR mutant expressed more MntC protein than wild-type, and expression was independent of Mn(II), consistent with a role for PerR as a repressor of mntABC expression. The PerR regulon of N. gonorrhoeae was defined by microarray analysis and includes ribosomal proteins, TonB-dependent receptors and an alcohol dehydrogenase. Both the mntC and perR mutants had reduced intracellular survival in a human cervical epithelial cell model.  相似文献   

17.
The cyanobacterium Synechocystis sp. PCC 6803 carries out oxygenic photosynthesis analogous to higher plants. Its photosystem I contains seven different polypeptide subunits. The cartridge mutagenesis technique was used to inactivate the psaD gene which encodes subunit II of photosystem I. A mutant strain lacking subunit II was generated by transforming wild type cells with cloned DNA in which psaD gene was interrupted by a gene conferring kanamycin resistance. The photoautotrophic growth of mutant strain is much slower than that of wild type cells. The membranes prepared from mutant cells lack subunit II of photosystem I. Studies on the purified photosystem I reaction center revealed that the complex lacking subunit II is assembled and is functional in P700 photooxidation but at much reduced rate. Therefore, subunit II of photosystem I is required for efficient function of photosystem I.  相似文献   

18.
Light-induced absorbance changes were investigated in chloroplast fragments of wild type Chlamydomonas reinhardi and 5 different mutant strains having impaired photosynthesis. Two absorbance changes were detected, 1 having a maximum at 553 nm and the other at 559 nm. The component exhibiting the 553 nm change is a cytochrome similar to cytochrome f from higher plant chloroplasts. The component exhibiting the 559 nm change has the properties of a cytochrome similar to cytochrome b(3). Two of the mutant strains (ac-115 and ac-141) were found to lack the 559 cytochrome and light induced only the oxidation of the 553 cytochrome. A third mutant strain (ac-206), previously shown to lack the 553 cytochrome, exhibited only the light-induced reduction of the 559 cytochrome. A fourth mutant strain (ac-208), shown to lack plastocyanin, exhibited absorbance changes attributable to both cytochromes. However, light was capable of inducing the reduction of the 559 cytochrome but not its oxidation. On the other hand, light induced the oxidation of the 553 cytochrome but not its reduction.These observations are discussed in terms of the series formulation for photosynthetic electron transport in which the 559 cytochrome is reduced by system II and transfers electrons via the component affected in ac-21 to the 553 cytochrome. Accordingly, system I sensitizes the oxidation of the 3 components of the electron transport chain.  相似文献   

19.
CP 47, a component of photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbB gene. Site-specific mutagenesis has been used to alter a portion of the psbB gene encoding the large extrinsic loop E of CP 47 in the cyanobacterium Synechocystis 6803. Alteration of a lysine residue occurring at position 321 to glycine produced a strain with altered PSII activity. This strain grew at wild-type rates in complete BG-11 media (480 µM chloride). However, oxygen evolution rates for this mutant in complete media were only 60% of the observed wild-type rates. Quantum yield measurements at low light intensities indicated that the mutant had 66% of the fully functional PSII centers contained in the control strain. The mutant proved to be extremely sensitive to photoinactivation at high light intensities, exhibiting a 3-fold increase in the rate of photoinactivation. When this mutant was grown in media depleted of chloride (30 µM chloride), it lost the ability to grow photoautotrophically while the control strain exhibited a normal rate of growth. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 µM bromide to the chloride-depleted BG-11 media. In the presence of glucose, the mutant and control strains grew at comparable rates in either chloride-containing or chloride-depleted media. Oxygen evolution rates for the mutant were further depressed (28% of control rates) under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. Measurements of the variable fluorescence yield indicated that the mutant assembled fewer functional centers in the absence of chloride. These results indicate that the mutation K321G in CP 47 affects PSII stability and/or assembly under conditions where chloride is limiting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号