首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
D A Haber  W G Thilly 《Life sciences》1978,22(18):1663-1673
Morphological transformation in C3H/10T12 cells treated with varied concentrations of benzo (α) pyrene (BP) was measured following subculture at low cell densities. Subconfluent cultures exposed to BP were allowed to grow to confluence, trypsinized, and reseeded at cell densities ranging from 5 to 2,300 surviving cells/cm2. These secondary cultures were incubated for 8 to 9 weeks, stained, and examined for evidence of morphological transformation. BP-treated cells reseeded in virtual isolation in microwells (approx. 5 surviving cells/cm2) transformed at frequencies up to 14.5%. At these low initial cell densities, transformation frequency did not demonstrate a significant dependence on BP concentration. However, BP-treated cells reseeded at higher densities (11 to 2,300 surviving cells/cm2) showed both density-dependent transformation frequencies and BP-concentration dependence of transformation. As reported previously (Haber et al., Cancer Res. 37 1644, 1977), the subculturing of treated cells did not affect the BP-concentration dependence of focus formation in the C3H/10T12 transformation assay. Cell density-dependent suppression of morphological transformation has now been observed over a wide range of BP concentration. We suggest that this phenomenon is associated with colony interactions and consider various possible mechanisms of BP involvement.  相似文献   

4.
A C3H/10T1/2 cell line containing an inducible metallothionein-ras hybrid oncogene was conditionally and reversibly transformed upon exposure to zinc ions. Interestingly, although the cell line was fully malignant when expressing only low levels ofras, complete morphological transformation required much higher levels.  相似文献   

5.
The relative biological effectiveness (RBE) of a range of neutron energies relative to 250-kVp X rays has been determined for oncogenic transformation and cell survival in the mouse C3H 10T 1/2 cell line. Monoenergetic neutrons at 0.23, 0.35, 0.45, 0.70, 0.96, 1.96, 5.90, and 13.7 MeV were generated at the Radiological Research Accelerator Facility of the Radiological Research Laboratories, Columbia University, and were used to irradiate asynchronous cells at low absorbed doses from 0.05 to 1.47 Gy. X irradiations covered the range 0.5 to 8 Gy. Over the more than 2-year period of this study, the 31 experiments provided comprehensive information, indicating minimal variability in control material, assuring the validity of comparisons over time. For both survival and transformation, a curvilinear dose response for X rays was contrasted with linear or nearly linear dose responses for the various neutron energies. RBE increased as dose decreased for both end points. Maximal RBE values for transformation ranged from 13 for cells exposed to 5.9-MeV neutrons to 35 for 0.35-MeV neutrons. This study clearly shows that over the range of neutron energies typically seen by nuclear power plant workers and individuals exposed to the atomic bombs in Japan, a wide range of RBE values needs to be considered when evaluating the neutron component of the effective dose. These results are in concordance with the recent proposals in ICRU 40 both to change upward and to vary the quality factor for neutron irradiations.  相似文献   

6.
The effect of 10(-5) M bromodeoxyuridine (BrdUrd) substitution in C3H 10T1/2 cells was evaluated. Cellular toxicity increased rapidly for BrdUrd exposure times that were longer than the population doubling time. Radiosensitization by BrdUrd exposure was almost complete after one cell doubling time and was characterized by a decrease in D0 and the survival curve shoulder. Exposure to BrdUrd for one cell doubling time produced only very low transformation levels, but for prolonged BrdUrd exposure times, the transformation frequency per viable cell increased significantly. BrdUrd incorporation also enhanced radiation induction of transformation above the transformation levels resulting from the independent action of X rays or BrdUrd treatment. These results show that BrdUrd is a transforming agent in C3H 10T1/2 cells and thus may be a carcinogen and that BrdUrd can enhance radiation-induced transformation.  相似文献   

7.
C3H/10T1/2 mouse embryo cells and a transformed clone were used in these initial experiments to investigate the future application of this model culture system to studies of ether-linked lipids in cancer cells. Clone 8 cells are nontumorigenic, nontransformed, and maintain normal morphology to passages 15–20. Clone 16 cells were derived from morphologically transformed foci of clone 8 cells exposed to the chemical carcinogen, 3-methylcholanthrene, and are highly tumorigenic. The data presented here demonstrate that the high amounts of ether-linked lipids, characteristic of tumors, are likewise elevated in cells that have been oncogenically transformed in vitro. When incubated with labeled fatty alcohols, the transformed cells show a stimulated incorporation of radioactivity into alkyldiacylglycerols (>100% over clone 8), whereas radioactivity in the alkyl moiety of the phospholipids is not altered. Analysis of the lipids formed from [1-14C]hexadecanol indicates that the nontransformed cells have a greater capacity to oxidize hexadecanol and incorporate the resulting carboxylic acid into acyl groups. Quantitative analysis of cellular lipids shows that in the oncogenically transformed cells alkyldiacylglycerols are increased (123% over clone 8).  相似文献   

8.
C3H 10T1/2 cells were synchronized by a modified mitotic shake-off procedure. X irradiation of cells at various intervals after mitotic harvest indicated a single narrow window (about 2 h) of sensitivity to the induction of oncogenic transformation. It is not possible to delineate precisely the time in the cycle at which this sensitivity is expressed. The most likely candidate is G2 phase, though we cannot eliminate the possibility that the sensitive period begins in late S phase. In the same synchronized cells, cell lethality showed the conventional pattern, i.e., sensitivity in mitosis and resistance in late S and in G1 phase.  相似文献   

9.
Transformation of C3H/10T1/2 cells was induced by 3-methylcholanthrene. Treatment with hexamethylene bisacetamide (HMBA), a differentiation inducing and poly (ADP-ribose)-synthesis modifying substance, influences expression of multilayered foci in a treatment schedule-dependent manner. Inhibition of transformation occurred only if HMBA was present after the genotoxic damage. After HMBA treatment most of transformed cells showed an end-differentiation like form.  相似文献   

10.
X-ray induced transformation of C3H10T1/2 cells was suppressed in a concentration-dependent manner by administration of ascorbic acid after irradiation (0.1-20 micrograms/ml for the first week) in the culture medium. The dose-response curve was shifted about 60% downward and was slightly steeper in the presence of ascorbic acid (5 micrograms/ml for the first week) than in its absence. The 1-week treatment procedure revealed that cells initiated by radiation remained susceptible to ascorbic acid until the time of morphological phenotype expression. The neoplastically transformed phenotype expressed after incubation for 8 weeks could no longer be suppressed by ascorbic acid even after culture transfer. Similarly, the neoplastically transformed phenotype suppressed for 8 weeks by ascorbic acid treatment was not subsequently expressed in the absence of ascorbic acid. On the basis of the oxygen-detoxifying nature of ascorbic acid, we postulated that expression of the neoplastically transformed phenotype is promoted by reactive oxygen species and peroxy radicals generated in cells during the whole assay period. The data may be useful as a guide for chemopreventive efforts against radiation carcinogenesis.  相似文献   

11.
12.
Ouabain-resistance mutation and cell cycle-dependent transformation were studied concurrently in the C3H/10T1/2 cell line treated with N-nitroso-2-acetylaminofluorene (N-NO-AAF) or N-nitroso-N-2-fluorenylacetamide. N-NO-AAF is a new direct-acting mutagen that exhibits a very short half-life (34 min) in complete medium independent of cell number seeded. With 0.1-0.3 mM of N-NO-AAF, cytotoxicity was noted after exposure for 2 h, but another phase of cytotoxicity was observed between 8 and 24 h. N-NO-AAF was more toxic than its parent compound 2-AAF. Moreover, maximal mutation frequency at the Na+/K(+)-ATPase gene locus (ouar mutation) was attained within 30 or 40 min of exposure, dependent on dosage of N-NO-AAF. With 2-AAF, 2-AF and 2-nitrofluorene, however, no detectable mutants were found under the same conditions. In cell cycle-dependent transformation assays, cells were synchronized by release from confluence-induced arrest of proliferation, 2 concentrations of N-NO-AAF were added for 2 h at various intervals during the cell cycle. The results clearly revealed that cells in 2 specific time intervals were susceptible to malignant transformation, i.e., at 10 and 18 h (early S phase) after release from the block.  相似文献   

13.
The findings of Hill et al. (1984) on the greatly enhanced transformation frequencies at very low dose rates of fission neutrons induced us to perform an analogous study with alpha-particles at comparable dose rates. Transformation frequencies were determined with gamma-rays at high dose rate (0.5 Gy/min), and with alpha-particles at high (0.2 Gy/min) and at low dose rates (0.83-2.5 mGy/min) in the C3H 10T1/2 cell system. alpha-particles were substantially more effective than gamma-rays, both for cell inactivation and for neoplastic transformation at high and low dose rates. The relative biological effectiveness (RBE) for cell inactivation and for neoplastic transformation was of similar magnitude, and ranged from about 3 at an alpha-particle dose of 2 Gy to values of the order of 10 at 0.25 Gy. In contrast to the experiments of Hill et al. (1984) with fission neutrons, no increased transformation frequencies were observed when the alpha-particle dose was protracted over several hours.  相似文献   

14.
C3H/10T1/2 cells were exposed to 2.45-GHz microwaves for 24 h and/or 1.5 Gy of 238-kVp X rays at 3.75 Gy/min. Transformation frequency and cell survival were measured with or without postirradiation addition of the tumor promoter tetradecanoyl-phorbol-13-acetate (TPA) at 0.1 microgram/ml. We previously reported (Carcinogenesis 6,859-864, 1985) an enhancement of transformation frequency when 10T1/2 cells exposed to a special sequence of microwaves and X rays were subsequently cultured in TPA. The same sequence of microwaves and X rays without promotion resulted in a transformation response similar to that induced by X rays alone. We now report statistically significant (at P greater than 0.999) enhancement of transformation response by TPA in cells exposed to 2.45-GHz microwaves (SAR = 4.4 W/kg). Microwaves alone had no effect on transformation. Plating efficiency and cell survival were not affected by TPA or microwave treatments.  相似文献   

15.
Treatment of mammalian cells with lactate or inhibitors of glycolysis alters their radiation response, particularly in the low dose region of the dose response curve. The occurrence of both high lactate levels and high glycolytic metabolism in tumours is well known and therefore the effect of lactate on a cell line sensitive to radiation induced transformation was examined using a single exposure to Cobalt 60 gamma rays as the carcinogen challenge. The results indicate that cells treated with 5mM lactate before irradiation exhibit changes in morphology and growth rate and that the transformation frequency is increased by three to ten fold following 24 hours lactate treatment just prior to irradiation. Examination of radiation survival curves showed a positive correlation between transformation frequency and size of the shoulder, but increasing transformation frequency was associated with a decrease in Do. A mechanism involving altered Redox potential in lactate treated cells is suggested. The results are discussed in terms of their possible significance for radiotherapy.  相似文献   

16.
With exponential cultures of C3H/10T1/2 cells, we have investigated the effect of X-ray dose protraction on oncogenic cell transformation in the dose range 0.25-2 Gy. Within a particular experiment a constant exposure time was used. In different experiments exposure time varied between 1 and 5h. Cell transformation was analysed using the linear-quadratic relation, gamma (D) = alpha 1D + alpha 2D2, between transformation frequency per surviving cell and X-ray dose. Based on values of the linear coefficients, we developed an empirical formula for relating slopes of dose induction curves obtained at high or reduced dose rate condition. Our estimate of repair half-time for cell transformation with 95 per cent confidence limits is 2.4 (1.8, 3.0) h.  相似文献   

17.
R L Nelson  V F Garry 《In vitro》1983,19(7):551-558
This report demonstrates that low passage C3H 10T1/2 cells treated with the carcinogens benzo(a)pyrene or diepoxybutane are transformed morphologically as colonies in as little as 14 d after carcinogen treatment. A transforming dose-response curve is achieved but the frequency of transformation is less than half the expected for 38 d foci, compared on the basis of percent transformants per cell plated. Anchorage-independent cell growth, plating efficiency, doubling time, cell density, and modal chromosomal number were examined from transformed colonies and foci. The data from colony transformants show progressive alteration of these in vitro expressions of neoplastic character with continued subcultivation, consistent with the multistep hypothesis of carcinogenesis. Early in vivo data obtained from one colony-derived transformed cell line show tumorigenesis in irradiated mice within 13 wk of implantation. With continued in vivo passage, tumors were observed in 4 to 6 wk.  相似文献   

18.
We have investigated the effect of fission-spectrum neutron dose fractionation on neoplastic transformation of exponentially growing C3H 10T1/2 cells. Total doses of 10.8, 27, 54, and 108 cGy were given in single doses or in five equal fractions delivered at 24-h intervals in the biological channel of the RSV-TAPIRO reactor at CRE-Casaccia. Both cell inactivation and neoplastic transformation were more effectively induced by fission neutrons than by 250-kVp X rays. No significant effect on cell survival or neoplastic transformation was observed with split doses compared to single doses of fission-spectrum neutrons. Neutron RBE values relative to X rays determined from data for survival and neoplastic transformation were comparable.  相似文献   

19.
We have evaluated radiosensitivity parameters for cellular transformation from published experimental data on neoplastic transformations induced in C3H10T1/2 cells by BEVALAC ions. The measured RBE values are well reproduced by a track theory calculation using sets of m-target parameters with either m = 2 or m = 3, suggesting a quadratic or cubic extrapolation to low doses of gamma rays. Using track theory one is thus able to predict transformation frequencies in those cells after an arbitrary radiation field, under known or assumed conditions of exposure, in a manner shown earlier for cellular survival. Extension of these calculations to interpret cancer incidence in vivo is also discussed.  相似文献   

20.
Repairable and nonrepairable components of gamma-ray damage leading to cell reproductive death were determined by measuring the range over which dose rate influenced the response of non-cycling C3H 10T 1/2 mouse cells. Cell proliferation and cell cycle redistribution were eliminated as factors influencing the dose-rate effect in the system by irradiating confluent monolayers of contact inhibited cells. The radiosensitivity of the cells did not change, and no selective loss of damaged cells occurred over the extended treatment times. A pronounced dose-rate effect was observed over the range between 55.6 and 0.29 Gy/hr, but a limit to the repair-dependent dose-rate effect was reached at 0.29 Gy/hr since no further reduction in effect per unit dose was observed when the dose rate was reduced to 0.17 or 0.06 Gy/hr. The survival curves, which were simple exponential functions of dose at dose rates of 0.29 Gy/hr and below, have a common Do of 7.32 Gy and represent an accurate measurement of the nonrepairable component of damage. Log-phase cultures showed remarkably different responses over the range of dose rates, due in large part to cell cycle redistribution and in some cases, cell proliferation during exposures. The results of these studies were compared with time-dose relationships used in clinical brachy-therapy and agree remarkably well with corrections in total dose suggested by R. Paterson [Br. J. Radiol. 25, 505-516 (1952)] and A.E.S. Green [cited in F. Ellis, Curr. Top. Radiat. Res. Q. 4, 357-397 (1968)] when the standard treatment time is changed. Comparison of our data with in vivo isoeffect curves of total dose vs dose per fraction for "early" and "late" tissue responses indicate that cell cycle redistribution should not be ignored as a factor influencing time-dose relationships in radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号