首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parents often have important influences on their offspring's traits and/or fitness (i.e., maternal or paternal effects). When offspring fitness is determined by the joint influences of offspring and parental traits, selection may favor particular combinations that generate high offspring fitness. We show that this epistasis for fitness between the parental and offspring genotypes can result in the evolution of their joint distribution, generating genetic correlations between the parental and offspring characters. This phenomenon can be viewed as a coadaptive process in which offspring genotypes evolve to function with the parentally provided environment and, in turn, the genes for this environment become associated with specific offspring genes adapted to it. To illustrate this point, we present two scenarios in which selection on offspring alone alters the correlation between a maternal and an offspring character. We use a quantitative genetic maternal effect model combined with a simple quadratic model of fitness to examine changes in the linkage disequilibrium between the maternal and offspring genotypes. In the first scenario, stabilizing selection on a maternally affected offspring character results in a genetic correlation that is opposite in sign to the maternal effect. In the second scenario, directional selection on an offspring trait that shows a nonadditive maternal effect can result in selection for positive covariances between the traits. This form of selection also results in increased genetic variation in maternal and offspring characters, and may, in the extreme case, promote host-race formation or speciation. This model provides a possible evolutionary explanation for the ubiquity of large genetic correlations between maternal and offspring traits, and suggests that this pattern of coinheritance may reflect functional relationships between these characters (i.e., functional integration).  相似文献   

2.
Natural populations vary tremendously in their susceptibility to infectious disease agents. The factors (environmental or genetic) that underlie this variation determine the impact of disease on host population dynamics and evolution, and affect our capacity to contain disease outbreaks and to enhance resistance in agricultural animals and disease vectors. Here, we show that changes in the environmental conditions under which female Daphnia magna are kept can more than halve the susceptibility of their offspring to bacterial infection. Counter-intuitively, and unlike the effects typically observed in vertebrates for transfer of immunity, mothers producing offspring under poor conditions produced more resistant offspring than did mothers producing offspring in favourable conditions. This effect occurred when mothers who were well provisioned during their own development then found themselves reproducing in poor conditions. These effects likely reflect adaptive optimal resource allocation where better quality offspring are produced in poor environments to enhance survival. Maternal exposure to parasites also reduced offspring susceptibility, depending on host genotype and offspring food levels. These maternal responses to environmental conditions mean that studies focused on a single generation, and those in which environmental variation is experimentally minimized, may fail to describe the crucial parameters that influence the spread of disease. The large maternal effects we report here will, if they are widespread in nature, affect disease dynamics, the level of genetic polymorphism in populations, and likely weaken the evolutionary response to parasite-mediated selection.  相似文献   

3.
Plastic responses to temperature during embryonic development are common in ectotherms, but their evolutionary relevance is poorly understood. Using a combination of field and laboratory approaches, we demonstrate altitudinal divergence in the strength of effects of maternal thermal opportunity on offspring birth date and body mass in a live-bearing lizard (Niveoscincus ocellatus). Poor thermal opportunity decreased birth weight at low altitudes where selection on body mass was negligible. In contrast, there was no effect of maternal thermal opportunity on body mass at high altitudes where natural selection favored heavy offspring. The weaker effect of poor maternal thermal opportunity on offspring development at high altitude was accompanied by a more active thermoregulation and higher body temperature in highland females. This may suggest that passive effects of temperature on embryonic development have resulted in evolution of adaptive behavioral compensation for poor thermal opportunity at high altitudes, but that direct effects of maternal thermal environment are maintained at low altitudes because they are not selected against. More generally, we suggest that phenotypic effects of maternal thermal opportunity or incubation temperature in reptiles will most commonly reflect weak selection for canalization or selection on maternal strategies rather than adaptive plasticity to match postnatal environments.  相似文献   

4.
Heritability of body size in two experimentally created environments, representing good and poor feeding conditions, respectively, was estimated using cross-fostered collared flycatcher Ficedula albicollis nestlings. Young raised under poor feeding conditions attained smaller body size (tarsus length) than their full-sibs raised under good feeding conditions. Parent-offspring regressions revealed lower heritability (h2) of body size under poor than under good feeding conditions. Hence, as the same set of parents were used in the estimation of h2 in both environments, this suggests environment-dependent change in additive genetic component of variance (VA), or that the genetic correlation between parental and poor offspring environment was less than that between parental and good offspring environment. However, full-sib analyses failed to find evidence for genotype-environment interactions, although the power of these tests might have been low. Full-sib heritabilities in both environments tended to be higher than estimates from parent-offspring regressions, indicating that prehatching or early posthatching common environment/maternal effects might have inflated full-sib estimates of VA. The effect of sibling competition on estimates of VA was probably small as the nestling size-hierarchy at day 2 posthatch was not generally correlated with size-hierarchy at fledging. Furthermore, there was no correlation between maternal body condition during the incubation and final size of offspring, indicating that direct maternal effects related to nutritional status were small. A review of earlier quantitative genetic studies of body size variation in birds revealed that in eight of nine cases, heritability of body size was lower in poor than in good environmental conditions. The main implication of this relationship will be a decreased evolutionary response to selection under poor environmental conditions. On the other hand, this will retard the loss of genetic variation by reducing the accuracy of selection and might help explain the moderate to high heritabilities of body-size traits under good environmental conditions.  相似文献   

5.

Background

Birth weight (BW) predicts many health outcomes, but the relative contributions of genes and environmental factors to BW remain uncertain. Some studies report stronger mother-offspring than father-offspring BW correlations, with attenuated father-offspring BW correlations when the mother is stunted. These findings have been interpreted as evidence that maternal genetic or environmental factors play an important role in determining birth size, with small maternal size constraining paternal genetic contributions to offspring BW. Here we evaluate mother-offspring and father-offspring birth weight (BW) associations and evaluate whether maternal stunting constrains genetic contributions to offspring birth size.

Methods/Principal Findings

Data include BW of offspring (n = 1,101) born to female members (n = 382) and spouses of male members (n = 275) of a birth cohort (born 1983–84) in Metropolitan Cebu, Philippines. Regression was used to relate parental and offspring BW adjusting for confounders. Resampling testing was used to evaluate whether false paternity could explain any evidence for excess matrilineal inheritance. In a pooled model adjusting for maternal height and confounders, parental BW was a borderline-significantly stronger predictor of offspring BW in mothers compared to fathers (sex of parent interaction p = 0.068). In separate multivariate models, each kg in mother’s and father’s BW predicted a 271±53 g (p<0.00001) and 132±55 g (p = 0.017) increase in offspring BW, respectively. Resampling statistics suggested that false paternity rates of >25% and likely 50% would be needed to explain these differences. There was no interaction between maternal stature and maternal BW (interaction p = 0.520) or paternal BW (p = 0.545).

Conclusions/Significance

Each kg change in mother’s BW predicted twice the change in offspring BW as predicted by a change in father’s BW, consistent with an intergenerational maternal effect on offspring BW. Evidence for excess matrilineal BW heritability at all levels of maternal stature points to indirect genetic, mitochondrial, or epigenetic maternal contributions to offspring fetal growth.  相似文献   

6.
Differential investment in offspring by parental and progeny gender has been discussed and periodically analyzed for the past 80 years as an evolutionary adaptive strategy. Parental investment theory suggests that parents in poor condition have offspring in poor condition. Conversely, parents in good condition give rise to offspring in good condition. As formalized in the Trivers-Willard hypothesis (TWH), investment in daughters will be greater under poor conditions while sons receive greater parental investment under good conditions. Condition is ultimately equated to offspring reproductive fitness, with parents apparently using a strategy to maximize their genetic contribution to future generations. Analyses of sex ratio have been used to support parental investment theory and in many instances, though not all, results provide support for TWH. In the present investigation, economic strategies were analyzed in the context of offspring sex ratio and survival to reproductive age in a Zapotec-speaking community in the Valley of Oaxaca, southern Mexico. Growth status of children, adult stature, and agricultural resources were analyzed as proxies for parental and progeny condition in present and prior generations. Traditional marriage practice in Mesoamerican peasant communities is patrilocal postnuptial residence with investments largely favoring sons. The alternative, practiced by ~25% of parents, is matrilocal postnuptial residence which is an investment favoring daughters. Results indicated that sex ratio of offspring survival to reproductive age was related to economic strategy and differed significantly between the patrilocal and matrilocal strategies. Variance in sex ratio was affected by condition of parents and significant differences in survival to reproductive age were strongly associated with economic strategy. While the results strongly support TWH, further studies in traditional anthropological populations are needed.  相似文献   

7.
The associations patterns between reproductive success, measured by the total number of offspring, number of living offspring and number of dead offspring, and parental body size, estimated by stature, body weight and Body mass index, were tested in 65 female and 103 male members of a !Kung San population ageing between 25 and 40 years (x = 30.2 yr.) from northern Namibia. In both sexes a significant interaction between fertility patterns and body dimensions was found. Nevertheless, the association patterns differed markedly between the two sexes. While in males tallness and an improved weight status was associated significantly with a higher number of surviving offspring, smaller and lighter females had significantly more surviving children. In males a directional selection towards increased stature and better weight status is in accordance with the well known secular trend of acceleration. In females first of all the postpartum changes in body composition and body weight, resulting from exhausting infant feeding practices seem to support the maternal depletion hypothesis.  相似文献   

8.
Understanding the evolution and maintenance of within-sex reproductive morphs, or alternative reproductive phenotypes (ARPs), requires in depth understanding of the proximate mechanisms that determine ARP expression. Most species express ARPs in complex ecological environments, yet little is know about how different environmental variables collectively affect ARP expression. Here, I investigated the influence of maternal and developmental nutrition and sire phenotype on ARP expression in bulb mites (Rhizoglyphus robini), where males are either fighters, able to kill other mites, or benign scramblers. In a factorial experiment, females were raised on a rich or a poor diet, and after maturation they were paired to a fighter or a scrambler. Their offspring were put on the rich or poor diet. Females on the rich diet increased investment into eggs when mated to a fighter, but suffered reduced longevity. Females indirectly affected offspring ARP expression as larger eggs developed into larger final instars, which were more likely to develop into a fighter. Final instar size, which also strongly depended on offspring nutrition, was the main cue for morph development: a switch point, or size threshold, existed where development switched from one phenotype to the other. Sire phenotype affected offspring phenotype, but only if offspring were on the poor diet, indicating a gene by environment interaction. Overall, the results revealed that complex environmental effects can underlie ARP expression, with differential maternal investment potentially amplifying genetic effects on offspring morphology. These effects can therefore play an important role in understanding how selection affects ARP expression and, like quantitative genetics models for continuous traits, should be incorporated into models of threshold traits.  相似文献   

9.
The effect of non-random mating on genetic response was compared for populations with discrete generations. Mating followed a selection step where the average coancestry of selected animals was constrained, while genetic response was maximised. Minimum coancestry (MC), Minimum coancestry with a maximum of one offspring per mating pair (MC1) and Minimum variance of the relationships of offspring (MVRO) mating schemes resulted in a delay in inbreeding of about two generations compared with Random, Random factorial and Compensatory mating. In these breeding schemes where selection constrains the rate of inbreeding, ΔF, the improved family structure due to non-random mating increased genetic response. For schemes with ΔF constrained to 1.0% and 100 selection candidates, genetic response was 22% higher for the MC1 and MVRO schemes compared with Random mating schemes. For schemes with a less stringent constraint on ΔF or more selection candidates, the superiority of the MC1 and MVRO schemes was smaller (5–6%). In general, MC1 seemed to be the preferred mating method, since it almost always yielded the highest genetic response. MC1 mainly achieved these high genetic responses by avoiding extreme relationships among the offspring, i.e. fullsib offspring are avoided, and by making the contributions of ancestors to offspring more equal by mating least related animals.  相似文献   

10.
Summary Effects of truncation selection of a primary trait upon genetic correlation between the primary trait and an unselected secondary trait were observed during 30 generations. Populations were 24 male and 24 female parents per generation randomly mated with replacement, the number of offspring set by intensity of selection. Each trait was controlled by genes with equal effects and complete dominance segregating independently from starting frequencies of 0.5 at each of 48 loci. Three levels each of genetic correlation, selection, and environmental variation were simulated.Genetic correlation decreased faster under more intense selection by lower than by upper truncation but behaved similarly in both by remaining near initial level when as many as one-half of the offspring were saved for parents. Truncation selection decreased genetic correlation in the offspring selected to be parents whether selection was by upper or lower truncation. Estimates of genetic correlation from covariances between phenotypes of parent and offspring were erratic for both directions of selection.Michigan Agricultural Experiment Station Journal Article4841. Part of North Central Regional Project NC-2.  相似文献   

11.
Genetic variation in fitness is required for the adaptive evolution of any trait but natural selection is thought to erode genetic variance in fitness. This paradox has motivated the search for mechanisms that might maintain a population''s adaptive potential. Mothers make many contributions to the attributes of their developing offspring and these maternal effects can influence responses to natural selection if maternal effects are themselves heritable. Maternal genetic effects (MGEs) on fitness might, therefore, represent an underappreciated source of adaptive potential in wild populations. Here we used two decades of data from a pedigreed wild population of North American red squirrels to show that MGEs on offspring fitness increased the population''s evolvability by over two orders of magnitude relative to expectations from direct genetic effects alone. MGEs are predicted to maintain more variation than direct genetic effects in the face of selection, but we also found evidence of maternal effect trade-offs. Mothers that raised high-fitness offspring in one environment raised low-fitness offspring in another environment. Such a fitness trade-off is expected to maintain maternal genetic variation in fitness, which provided additional capacity for adaptive evolution beyond that provided by direct genetic effects on fitness.  相似文献   

12.
As fitness returns during a breeding attempt are context-dependent, parents are predicted to bias their food allocation within a brood from poor towards good condition nestlings when environmental conditions deteriorate. We tested this prediction in the Alpine swift and the European starling, two migratory bird species, by modifying an ultraviolet (UV) visual signal of condition in nestlings and exploring how parents allocate food to their young as the season progresses. We show in both species that: (i) UV light reflected by the body skin of offspring positively correlates with their stature (i.e. body mass and skeletal size) and (ii) parental favouritism towards young with more UV reflective skin gradually increases as the season progresses. Early-breeding parents supplied food preferentially to UV pale (i.e. small stature) nestlings, whereas late-breeding parents favoured UV bright offspring (i.e. large stature). These results emphasize that parents use UV signals of offspring condition to adjust their feeding strategies depending on the ecological context.  相似文献   

13.
The aim of this study was to test how genetic gain for a trait not measured on the nucleus animals could be obtained within a genomic selection pig breeding scheme. Stochastic simulation of a pig breeding program including a breeding nucleus, a multiplier to produce and disseminate semen and a production tier where phenotypes were recorded was performed to test (1) the effect of obtaining phenotypic records from offspring of nucleus animals, (2) the effect of genotyping production animals with records for the purpose of including them in a genomic selection reference population or (3) to combine the two approaches. None of the tested strategies affected genetic gain if the trait under investigation had a low economic value of only 10% of the total breeding goal. When the relative economic weight was increased to 30%, a combination of the methods was most effective. Obtaining records from offspring of already genotyped nucleus animals had more impact on genetic gain than to genotype more distant relatives with phenotypes to update the reference population. When records cannot be obtained from offspring of nucleus animals, genotyping of production animals could be considered for traits with high economic importance.  相似文献   

14.
Non-insulin-dependent diabetes mellitus (NIDDM) has a high prevalence in Pima Indians. The disorder is familial, but the extent to which genetic factors are involved in its etiology is largely unknown. Segregation analysis was used to determine whether familial aggregation of NIDDM in this population could reflect the action of a single major gene. The analysis included 2,697 subjects from 653 nuclear families in which both parents and at least one offspring had been examined in the course of a longitudinal epidemiological study. The REGTL program of the SAGE package was used to fit models in which age at onset of NIDDM is transmitted from parent to offspring under the unified model for segregation analysis. Likelihood-ratio tests were used to test hypotheses related to genetic transmission. The hypothesis of no major effect was strongly rejected (P < .01), as was that of no transmission of the major effect (P < .01). Mendelian transmission was not rejected (P = .91). Similar results were obtained when covariates for obesity and birth cohort were added to the models and when a power transformation of age at onset was estimated. A strong effect of birth cohort with earlier age at onset in the later born cohorts was observed (P < .01). The findings are consistent with the hypothesis that a major gene influences the risk for NIDDM in Pima Indians by affecting age at onset. The expression of this gene may depend on environmental factors that have become more prevalent in recent-birth cohorts.  相似文献   

15.
Mating between relatives generally results in reduced offspring viability or quality, suggesting that selection should favor behaviors that minimize inbreeding. However, in natural populations where searching is costly or variation among potential mates is limited, inbreeding is often common and may have important consequences for both offspring fitness and phenotypic variation. In particular, offspring morphological variation often increases with greater parental relatedness, yet the source of this variation, and thus its evolutionary significance, are poorly understood. One proposed explanation is that inbreeding influences a developing organism’s sensitivity to its environment and therefore the increased phenotypic variation observed in inbred progeny is due to greater inputs from environmental and maternal sources. Alternatively, changes in phenotypic variation with inbreeding may be due to additive genetic effects alone when heterozygotes are phenotypically intermediate to homozygotes, or effects of inbreeding depression on condition, which can itself affect sensitivity to environmental variation. Here we examine the effect of parental relatedness (as inferred from neutral genetic markers) on heritable and nonheritable components of developmental variation in a wild bird population in which mate choice is often constrained, thereby leading to inbreeding. We found greater morphological variation and distinct contributions of variance components in offspring from highly related parents: inbred offspring tended to have greater environmental and lesser additive genetic variance compared to outbred progeny. The magnitude of this difference was greatest in late-maturing traits, implicating the accumulation of environmental variation as the underlying mechanism. Further, parental relatedness influenced the effect of an important maternal trait (egg size) on offspring development. These results support the hypothesis that inbreeding leads to greater sensitivity of development to environmental variation and maternal effects, suggesting that the evolutionary response to selection will depend strongly on mate choice patterns and population structure.  相似文献   

16.
Summary Effects of truncation selection of a primary trait upon genetic correlation with a secondary trait were examined over 30 generations in genetic populations simulated by computer. Populations were 24 males and 24 females mated randomly with replacement; number of offspring was determined by intensity of selection. Each trait was controlled by 48 loci segregating independently, effects were equal at every locus, and gene frequency was arbitrarily set at 0.5 at each locus in the initial generation. All combinations of three genetic correlations, three intensities of selection, and three environmental variances were simulated. Gene action was additive. Genetic correlation was set by number of loci which affected both traits and was measured each generation as the product-moment correlation of genotypic values and estimated by two methods of combining phenotypic covariances between parent and offspring.Genetic correlations in each offspring generation remained consistently near initial correlations for all environmental variances when fraction of offspring saved as parents was as large as one-half. When the fraction of offspring saved was as small as one-fifth, genetic correlations decreased but most rapidly with heritability high and after the 15th generation of selection. Truncation selection caused genetic correlation to decrease in those offspring selected to become parents of the next generation. Amount of reduction depended on heritability of the selected trait rather than on degree of truncation selection. Estimates of genetic correlation from phenotypic covariances between parent and offspring fluctuated markedly from real correlations in the small populations simulated.Michigan Agricultural Experiment Station Journal Article 4836. Part of North Central Regional Project NC-2.  相似文献   

17.
Abstract "Good genes" models of sexual selection predict that male courtship displays can advertise genetic quality and that, by mating with males with extreme displays, females can obtain genetic benefits for their offspring. However, because the relative performance of different genotypes can vary across environments, these genetic benefits may depend on the environmental context; in which case, static mating preferences may not be adaptive. To better understand how selection acts on the preference that female gray tree frogs ( Hyla versicolor ) express for long advertisement calls, I tested for genetic benefits in two realistic natural environments, by comparing the performance of half-sibling offspring sired by males with long versus short calls. Tadpoles from twelve such maternal half-sibships were raised in enclosures in their natal pond at two densities. In the low-density treatment, offspring of long-call males were larger at metamorphosis than were offspring of short-call males, whereas in the high-density treatment, offspring of males with long calls tended to metamorphose later than offspring of males with short calls. Thus, although the genes indicated by long calls were advantageous under low-density conditions, they were not beneficial under all conditions, suggesting that a static preference for long calls may not be adaptive in all environments. Such a genotype-by-environment interaction in the genetic consequences of mate choice predicts that when the environment is variable, selection may favor plasticity in female preferences or female selectivity among environments to control the conditions experienced by the offspring.  相似文献   

18.
Bijma P  Woolliams JA 《Genetics》1999,151(3):1197-1210
A method to predict long-term genetic contributions of ancestors to future generations is studied in detail for a population with overlapping generations under mass or sib index selection. An existing method provides insight into the mechanisms determining the flow of genes through selected populations, and takes account of selection by modeling the long-term genetic contribution as a linear regression on breeding value. Total genetic contributions of age classes are modeled using a modified gene flow approach and long-term predictions are obtained assuming equilibrium genetic parameters. Generation interval was defined as the time in which genetic contributions sum to unity, which is equal to the turnover time of genes. Accurate predictions of long-term genetic contributions of individual animals, as well as total contributions of age classes were obtained. Due to selection, offspring of young parents had an above-average breeding value. Long-term genetic contributions of youngest age classes were therefore higher than expected from the age class distribution of parents, and generation interval was shorter than the average age of parents at birth of their offspring. Due to an increased selective advantage of offspring of young parents, generation interval decreased with increasing heritability and selection intensity. The method was compared to conventional gene flow and showed more accurate predictions of long-term genetic contributions.  相似文献   

19.
The genetic control of 11 electrophoretically detected allozyme polymorphisms in the oyster Crassostrea virginica was investigated in 10 pair crosses. For nine allozyme loci, each offspring shared at least one band (electromorph) with each parent. For the remaining two loci (mannosephosphate isomerase and leucine aminopeptidase-2), some offspring failed to share a band with one or both parents. Several lines of evidence indicated that these anomalous results were due to transmission of null alleles. There was evidence of distorted segregation at 8 of the 11 loci. The departures from the Mendelian expectations within the pair crosses might be due either to viability selection in the offspring or to gametic selection in one or both parents, although the possibility that the distortion is due to a locus linked to the allozyme locus cannot be ruled out. However, there was no evidence that heterozygosity per se had an effect on viability of offspring within a cross. Linkage analysis revealed two linkage groups, one consisting of four allozyme loci and the other consisting of three loci.  相似文献   

20.
We demonstrate that egg size in side-blotched lizards is heritable (parent-offspring regressions) and thus will respond to natural selection. Because our estimate of heritability is derived from free-ranging lizards, it is useful for predicting evolutionary response to selection in wild populations. Moreover, our estimate for the heritability of egg size is not likely to be confounded by nongenetic maternal effects that might arise from egg size per se because we estimate a significant parent-offspring correlation for egg size in the face of dramatic experimental manipulation of yolk volume of the egg. Furthermore, we also demonstrate a significant correlation between egg size of the female parent and clutch size of her offspring. Because this correlation is not related to experimentally induced maternal effects, we suggest that it is indicative of a genetic correlation between egg size and clutch size. We synthesize our results from genetic analyses of the trade-off between egg size and clutch size with previously published experiments that document the mechanistic basis of this trade-off. Experimental manipulation of yolk volume has no effect on offspring reproductive traits such as egg size, clutch size, size at maturity, or oviposition date. However, egg size was related to offspring survival during adult phases of the life history. We partitioned survival of offspring during the adult phase of the life history into (1) survival of offspring from winter emergence to the production of the first clutch (i.e., the vitellogenic phase of the first clutch), and (2) survival of the offspring from the production of the first clutch to the end of the reproductive season. Offspring from the first clutch of the reproductive season in the previous year had higher survival during vitellogenesis of their first clutch if these offspring came from small eggs. We did not observe selection during these prelaying phases of adulthood for offspring from later clutches. However, we did find that later clutch offspring from large eggs had the highest survival over the first season of reproduction. The differences in selection on adult survival arising from maternal effects would reinforce previously documented selection that favors the production of small offspring early in the season and large offspring later in the season—a seasonal shift in maternal provisioning. We also report on a significant parent-offspring correlation in lay date and thus significant heritable variation in lay date. We can rule out the possibility of yolk volume as a confounding maternal effect—experimental manipulation of yolk volume has no effect on lay date of offspring. However, we cannot distinguish between genetic effects (i.e., heritable) and nongenetic maternal effects acting on lay date that arise from the maternal trait lay date per se (or other unidentified maternal traits). Nevertheless, we demonstrate how the timing of female reproduction (e.g., date of oviposition and date of hatching) affect reproductive attributes of offspring. Notably, we find that date of hatching has effects on body size at maturity and fecundity of offspring from later clutches. We did not detect comparable effects of lay date on offspring from the first clutch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号