首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ha H  Kim MS  Park J  Huh JY  Huh KH  Ahn HJ  Kim YS 《Life sciences》2006,79(16):1561-1567
Mesangial cell (MC) proliferation and extracellular matrix (ECM) accumulation are major pathologic features of chronic renal disease including chronic allograft nephropathy (CAN). Mycophenolic acid (MPA), a potent immunosuppressant, has emerged as a treatment to prevent CAN because it inhibits MC proliferation and ECM synthesis, but the mechanism involved has not been clarified. The present study examined relative role of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) activation in inhibitory effect of MPA on MC activation. Growth arrested and synchronized primary rat MC (passages 7-11) were stimulated by PDGF 10 ng/ml in the presence and absence of clinically attainable dose of MPA (0-10 microM). Cell proliferation was assessed by [(3)H]thymidine incorporation, fibronectin and the activation of ERK and p38 MAPK by Western blot analysis, and total collagen by [(3)H]proline incorporation. PDGF increased cell proliferation by 4.6-fold, fibronectin secretion by 3.2-fold, total collagen synthesis by 1.8-fold, and the activation of ERK and 38 MAPK by 5.6-fold and 3.1-fold, respectively, compared to control. MPA, at doses inhibiting PDGF-induced MC proliferation and ECM synthesis, effectively blocked p38 MAPK activation but reduced ERK activation by 23% at maximal concentration tested (10 microM). Exogenous guanosine partially reversed the inhibition of MPA on p38 MAPK activation. Inhibitor of ERK or p38 MAPK suppressed PDGF-induced MC proliferation and ECM synthesis. In conclusion, MPA inhibits p38 MAPK activation leading to inhibiting proliferation and ECM synthesis in MC. Guanosine reduction is partially responsible for inhibitory effect of MPA on p38 MAPK activation in MC.  相似文献   

2.
Growth factors and matrix proteins regulate the proliferation and differentiation of osteoblasts. The insulin-like growth factor (IGF) system comprises IGF-I, IGF-II, and six high-affinity IGF-binding proteins (IGFBPs). IGFs stimulate cell growth in many types of tissue; IGF-binding proteins regulate cellular actions and can affect cell growth. IGF-I is involved in differentiation, proliferation, and matrix formation in osteoblasts; IGFBP-5 is associated with the extracellular matrix (ECM) and can potentiate the actions of IGF-I. We investigated the effect of ECM proteins on the responses of MC3T3-E1 osteoblast cells to IGF-I and IGFBP-5. In addition, because extracellular signal-regulated kinases 1 and 2 (Erk 1/2) affect cell growth, we evaluated the effects of IGFBP-5 on Erk 1/2 phosphorylation in MC3T3-E1 cells. IGF-I caused an increase in IGFBP-5 expression in cultured MC3T3-E1 cells, and IGF-I plus IGFBP-5 significantly increased cell growth. Likewise, the addition of IGF-I and IGFBP-5 to cultured MC3T3-E1 cells increased the synthesis of the ECM proteins osteopontin (OPN) and thrombospondin-1 (TSP-1), which can bind to alphaVbeta3 integrin receptors on the cell surface. By contrast, the addition of an antibody against ECM proteins inhibited the effects of OPN and TSP-1 on IGFBP-5 expression. The stimulatory effect of IGFBP-5 was mediated via Erk 1/2 activation. These data suggest that IGFBP-5 regulates Erk 1/2 phosphorylation in cultured MC3T3-E1 cells via ECM proteins that may ultimately stimulate the growth of osteoblasts. We determined whether occupation of the alphaVbeta3 integrin receptor affects IGF-I receptor (IGF-IR)-mediated signaling and function in MC3T3-E1 osteoblast cells. Occupation of the alphaVbeta3 integrin receptor with ECM proteins induced IGF-I-stimulated IGF-IR phosphorylation. Conversely, in the presence of the alphaVbeta3-specific disintegrin echistatin, IGF-I-stimulated IGF-IR activation was inhibited. IGF-I-stimulated IGF-IR phosphorylation was accompanied by IRS-1 phosphorylation and MAPK activation. However, these effects were attenuated by echistatin. Thus, occupancy of the alphaVbeta3 disintegrin receptor modulates IGF-I-induced IGF-IR activation and IGF-IR-mediated function in MC 3T3-E1 osteoblasts.  相似文献   

3.
Human skeletal growth factor (hSGF), an 11-kD polypeptide purified from human bone, has been proposed to be a local regulator of bone formation. To investigate the underlying cellular mechanisms in an in vitro model system, we examined the effects of hSGF on proliferation and collagen synthesis in cells of the clonal osteoblast cell line MC3T3-E1. This line was isolated from newborn mouse calvarial cells and retains many characteristics of mature osteoblasts (Sudo, H., et al., (1984) J. Cell Biol. 96:191). A 14-hr treatment with hSGF increased noncollagenous protein synthesis to 215% of unstimulated controls and increased collagen synthesis to 630% of controls as determined by [3H]proline incorporation and high-pressure liquid chromatographic separation of [3H]proline and [3H]hydroxyproline in acid hydrolysates of trichloroacetic acid-insoluble protein. HSGF did not increase cell number over a 48-hr period and caused a reversible inhibition of DNA synthesis. Half-maximal hSGF concentration for stimulation of [3H]proline incorporation and inhibition of [3H]thymidine incorporation was 100 ng/ml. HSGF also inhibited DNA synthesis in cells stimulated by serum. In contrast, hSGF stimulated both collagen synthesis and DNA synthesis in primary cultures of chick embryo bone cells, which may be developmentally less mature than MC3T3-E1 cells. The results suggest that hSGF directly stimulated mature osteoblast matrix synthetic activity and that hSGF has differential effects on proliferation of osteoblast progenitor cells and mature osteoblasts.  相似文献   

4.
This study describes a potential of Phytolaccaceae (Phytolacca americana var.) as an inhibitor of high glucose-stimulated production of extracellular matrix (ECM) proteins and TGF-beta in cultured glomerular mesangial cells (GMCs). Raising the ambient glucose concentration for 24 hrs caused a dose-dependent increase in [3H]thymidine incorporation of GMCs, and the maximal response was achieved at 20 mM. Phytolaccaceae extracts (2.5-20 microg/ml) inhibited the high glucose-induced [3H]thymidine incorporation in a dose-dependent manner, and the concentrations tested here did not affect to the cell viability. Exposure of the GMCs to 20 mM glucose caused both ECM (collagen and fibronectin) accumulation and TGF-beta secretion, and these changes were significantly diminished by treatment of GMCs with Phytolaccaceae (10 microg/ml). Taken together, these results indicate that Phytolaccaceae inhibits the high glucose-induced GMCs proliferation partially through suppressing accumulation of ECM components and TGF-beta production, suggesting that Phytolaccaceae may be a promising agent for treating the development and progression of diabetic glomerulopathy.  相似文献   

5.
MC3T3-E1 cells demonstrate a lag in osteogenic development when seeded onto Poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV), a biomaterial with substantial potential for bone tissue repair. To determine if this was due to the priority of extracellular matrix (ECM) remodelling over other developmental processes, gene expression levels of proteins involved in the production, maintenance and turnover of the ECM were compared between cells grown on PHBV and tissue culture plastic (TCP) 24 h after seeding. When grown on PHBV, MC3T3-E1 cells up-regulated proteins such as the matrix metalloproteinases and down-regulated the expression of proteins such as collagens that are involved in cell-substrate interactions, but in later-stage processes. The results also suggest that proteins such as fibronectin and aggrecan, and particularly osteopontin, may be more suitable candidates for PHBV functionalization for optimal MC3T3-E1 cell growth than proteins like osteonectin, periostin, vitronectin or collagen. This study confirms the importance of understanding the specific response of therapeutically-relevant cells, such as human stem cells, to candidate biomaterial surfaces in order to achieve optimal regenerative therapies.  相似文献   

6.
Bone metastases from prostate cancer cause abnormal new bone formation, however, the factors involved and the pathways leading to the response are incompletely defined. We investigated the mechanisms of osteoblast stimulatory effects of LNCaP prostate carcinoma cell conditioned media (CM). MC3T3-E1 osteoblastic cells were cultured with CM from confluent LNCaP cells. LNCaP CM stimulated MAP kinase, cell proliferation (3H-thymidine incorporation), and protein synthesis (14C-proline incorporation) in the MC3T3-E1 cells. The increases in cell proliferation and protein synthesis were prevented by inhibition of the MAP kinase pathway. IGF-I mimicked the effects of the CM on the MC3T3-E1 cells and inhibition of IGF-I action decreased the LNCaP CM stimulation of 3H-thymidine and 14C-proline incorporation and MAP kinase activity. The findings indicate that IGF-I is an important factor for the stimulatory effects of LNCaP cell CM on cell proliferation and protein synthesis in osteoblastic cells, and that MAP kinase is a component of the signaling pathway for these effects.  相似文献   

7.
I Schvartz  O Ittoop  G Davidai  E Hazum 《Peptides》1992,13(1):159-163
The mitogenic activity of endothelin (ET) was studied in osteoblast-like cells, MC3T3-E1. [3H] Thymidine incorporation induced by ET was markedly lower than that of platelet-derived growth factor (PDGF). ET synergistically stimulated [3H] thymidine incorporation induced by PDGF with an apparent ED50 value of 2.5 nM. Treatment of MC3T3-E1 cells with ET and subsequent immunoblotting of the cell extracts with antiphosphotyrosine antibodies followed by labeling with [125I] protein A resulted in the identification of several phosphotyrosine-containing proteins. The intensity of these labeled phosphoproteins significantly increased when the cells were treated with a combination of ET and PDGF. Genistein, an inhibitor of tyrosine kinases, blocked [3H] thymidine incorporation as well as protein tyrosine phosphorylation stimulated by either ET, PDGF or the combination of ET and PDGF. These findings suggest that tyrosine phosphorylation could play a role in the comitogenic activity of ET in osteoblast-like cells.  相似文献   

8.
Mechanical cues present in the ECM have been hypothesized to provide instructive signals that dictate cell behavior. We probed this hypothesis in osteoblastic cells by culturing MC3T3-E1 cells on the surface of type I collagen-modified hydrogels with tunable mechanical properties and assessed their proliferation, migration, and differentiation. On gels functionalized with a low type I collagen density, MC3T3-E1 cells cultured on polystyrene proliferated twice as fast as those cultured on the softest substrate. Quantitative time-lapse video microscopic analysis revealed random motility speeds were significantly retarded on the softest substrate (0.25 ± 0.01 µm/min), in contrast to maximum speeds on polystyrene substrates (0.42 ± 0.04 µm/min). On gels functionalized with a high type I collagen density, migration speed exhibited a biphasic dependence on ECM compliance, with maximum speeds (0.34 ± 0.02 µm/min) observed on gels of intermediate stiffness, whereas minimum speeds (0.24 ± 0.03 µm/min) occurred on both the softest and most rigid (i.e., polystyrene) substrates. Immature focal contacts and a poorly organized actin cytoskeleton were observed in cells cultured on the softest substrates, whereas those on more rigid substrates assembled mature focal adhesions and robust actin stress fibers. In parallel, focal adhesion kinase (FAK) activity (assessed by detecting pY397-FAK) was influenced by compliance, with maximal activity occurring in cells cultured on polystyrene. Finally, mineral deposition by the MC3T3-E1 cells was also affected by ECM compliance, leading to the conclusion that altering ECM mechanical properties may influence a variety of MC3T3-E1 cell functions, and perhaps ultimately, their differentiated phenotype. bone; focal adhesion kinase; mechanotransduction; cytoskeleton; integrins  相似文献   

9.
Zinc is an essential element for bone formation; however, its role in osteoblast has not been well understood. In the present study, we hypothesized that zinc could increase osteogenetic function by stimulating osteoblast proliferation and osteoprotegerin (OPG) activity. To test this hypothesis, osteoblastic MC3T3-E1 cells were cultured and treated with various concentrations of zinc (0, 10, 30, 50, 70, 110, 130, and 150 μM) for 24 and 48 h. 3-[4,5-dimethylthiazol-2-y]-2,5-diphenyltetrazolium bromide assay showed that cell proliferation was significantly stimulated with 50 μM zinc treatment. Furthermore, under the same treatment condition, OPG expression was significantly increased as evidenced by the results of RT-PCR and ELISA. However, the zinc-induced OPG expression was significantly attenuated when MC3T3-E1 cells were co-treated with either protein kinase C (PKC) inhibitor, GF109203X, or the Inhibitor of mitogen-activated extracellular signal-regulated kinase 1 (MEK1), PD98059. Moreover, OPG expression was further increased when MC3T3-E1 cells were treated with PMA (the activator of protein of kinase C) in the presence of zinc. These results suggested that zinc would increase osteogenic function by stimulating PKC and MAPK signaling pathways.  相似文献   

10.
A two-dimensional intracellular Ca(2+) ([Ca(2+)](i)) imaging system was used to examine the relationship between [Ca(2+)](i) handling and the proliferation of MC3T3-E1 osteoblast-like cells. The resting [Ca(2+)](i) level in densely cultured cells was 1.5 times higher than the [Ca(2+)](i) level in sparsely cultured cells or in other cell types (mouse fibroblasts, rat vascular smooth muscle cells, and bovine endothelial cells). A high resting [Ca(2+)](i) level may be specific for MC3T3-E1 cells. MC3T3-E1 cells were stimulated with ATP (10 microM), caffeine (10 mM), thapsigargin (1 microM), or ionomycin (10 microM), and the effect on the [Ca(2+)](i) level of MC3T3-E1 cells was studied. The percentage of responding cells and the degree of [Ca(2+)](i) elevation were high in the sparsely cultured cells and low in densely cultured cells. The rank order for the percentage of responding cells and magnitude of the Ca(2+) response to the stimuli was ionomycin > thapsigargin = ATP > caffeine and suggests the existence of differences among the various [Ca(2+)](i) channels. All Ca(2+) responses in the sparsely cultured MC3T3-E1 cells, unlike in other cell types, disappeared after the cells reached confluence. Heptanol treatment of densely cultured cells restored the Ca(2+) response, suggesting that cell-cell contact is involved with the confluence-dependent disappearance of the Ca(2+) response. Immunohistological analysis of type 1 inositol trisphosphate receptors and electron microscopy showed distinct expression of inositol trisphosphate receptor proteins and smooth-surfaced endoplasmic reticulum in sparsely cultured cells but reduced levels in densely cultured cells. These results indicate that the underlying basis of confluence-dependent [Ca(2+)](i) regulation is down-regulation of smooth-surfaced endoplasmic reticulum by cell-cell contacts.  相似文献   

11.
Thrombospondin 1 (TSP1) is a multifunctional extracellular glycoprotein present mainly in the fetal and adult skeleton. Although an inhibitory effect of TSP1 against pathological mineralization in cultured vascular pericytes has been shown, its involvement in physiological mineralization by osteoblasts is still unknown. To determine the role of TSP1 in biomineralization, mouse osteoblastic MC3T3-E1 cells were cultured in the presence of antisense phosphorothioate oligodeoxynucleotides complementary to the TSP1 sequence. The 18- and 24-mer antisense oligonucleotides caused concentration-dependent increases in the number of mineralized nodules, acid-soluble calcium deposition in the cell/matrix layer, and alkaline phosphatase activity within 9 days, without affecting cell proliferation. The corresponding sense or scrambled oligonucleotides did not affect these parameters. In the antisense oligonucleotide-treated MC3T3-E1 cells, thickened extracellular matrix, well-developed cell processes, increased intracellular organelles, and collagen fibril bundles were observed. On the other hand, the addition of TSP1 to the culture decreased the production of a mineralized matrix by MC3T3-E1 cells. Furthermore, MC3T3-E1 clones overexpressing mouse TSP1 were established and assayed for TSP1 protein and their capacity to mineralize. TSP1 dose-dependently inhibited mineralization by these cells both in vitro and in vivo. These results indicate that TSP1 functions as an inhibitory regulator of bone mineralization and matrix production by osteoblasts to sustain bone homeostasis.  相似文献   

12.
Generally, fibroblast-like cells and other types of human cells have been used to demonstrate the principles of replicative senescence in vitro and in vivo. These cells go through three stages of proliferation, including vigorous proliferation, declining proliferation and quiescence or no proliferation. Any variation of this process occurring in osteoprogenitor cells may offer insight into the mechanism of age-related osteopaenia that predisposes individuals to osteoporosis and bone fractures. We selected MC3T3-E1 cells derived from mouse calvaria to study the mechanism of replicative senescence of pre-osteogenic cells because: (i) these cells constitute a well-known model for studying osteogenesis in vitro; (ii) they undergo a developmental sequence of proliferation and differentiation similar to primary cells in culture; and (iii) they show signs of replicative senescence. These cells were aged by multiple passaging before their use for studying growth kinetics and the effects of population density, effect of extracellular matrix (ECM), size and phases of the cell cycle. Our results show that (i) MC3T3-E1 cells go through the first two stages of proliferation in a manner similar to human cells, but escape the quiescent phase; (ii) the rate of proliferation is similar for low passage (LP) and high passage (HP) cells, but is decreased in very high passage cells (VHP); (iii) growth inhibition is observed using HP cells seeded at high density; (iv) HP ECM stimulates proliferation of both LP and HP cells; (v) a small increase in cell size is observed in HP cells, but no change is seen in the distribution analysis of their cell cycle; (vi) distribution analysis of the cell cycle of VHP cells reveals a decreased and an increased frequency of cells in S and G2 + M phases of their cell cycle, respectively. These results suggest that the mouse MC3T3-E1 cell line exhibits many of the cellular and molecular markers associated with replicative senescence in culture as defined by human cells, such as fibroblast-like cells. Alteration in the sensitivity of MC3T3-E1 cells to intercellular contact and increase in cell size are the primary factors contributing to decreased proliferation of HP cells.  相似文献   

13.
A stimulative effect of 1,25-dihydroxyvitamin D3 was tested on osteoblastic cells, clone MC3T3-E1, cultured in serum-free medium with 0.1% bovine serum albumin. This steroid increased alkaline phosphatase activity in a dose-related fashion. The steroid also stimulated dose-dependently collagen and non-collagen protein syntheses, their maximal effects being observed at 12 and 24 h, respectively. The incorporation of [3H]-proline into collagen or non-collagen protein in cells exposed to this steroid for 12 h was 2.9 or 1.9-fold over that of control cultures, respectively. These results strongly indicate the stimulative effects of 1,25-dihydroxyvitamin D3 on the differentiation of osteoblasts in vitro.  相似文献   

14.
The active component on the proliferation of osteoblastic MC3T3-E1 cells was purified and identified from bovine milk. The growth-promoting activity was measured by [(3)H]thymidine incorporation on the cell. The purified protein showed a molecular size of 17 kDa on SDS-PAGE. Its amino-terminal amino acid sequence was very similar to the internal sequence of bovine high molecular weight (HMW) kininogen, which comprises fragment 1.2. The promotion of proliferation was specific for osteoblastic MC3T3-E1 cells, not for fibroblast BALB/3T3 cells. In blood coagulation, HMW kininogen is considered to be cleaved by a specific enzyme kallikrein. HMW kininogen then releases two peptides, a biologically active peptide bradykinin and fragment 1.2, but the fate of fragment 1.2 is unknown. This milk-derived protein that comprises to fragment 1.2 showed a growth-promoting activity of osteoblasts. We propose the possibility that milk plays an important role in bone formation by supplying the active agent for osteoblasts as well as supplying calcium.  相似文献   

15.
The effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells in vitro was investigated to determine a cellular mechanism by which the isoflavones stimulate bone formation. Cells were cultured for 48 h in alpha-minimal essential medium containing either vehicle, genistein (l0(-7) - 10(-5) M) or daidzein (10(-7) - 10(-5) M). The 5,500 g supernatant of cell homogenate was used for assay of protein synthesis with [3H]leucine incorporation in vitro. The culture with genistein or daidzein caused a significant elevation of protein synthesis in the cell homogenate. The effect of genistein ( 10(-5) M) or daidzein ( 10(-5) M) in elevating protein synthesis was significantly prevented, when cells were cultured for 48 h in a medium containing either actinomycin D (10(-7) M) or cycloheximide (10(-6) M) in the absence or presence of isoflavones. Moreover, when genistein (10(-7) 10(-5) M) or daidzein (10(-6) and 10(-5) M) was added to the reaction mixture containing the cell homogenate obtained from osteoblastic cells cultured without isoflavone, protein synthesis was significantly raised. This increase was markedly blocked by the addition of cycloheximide (10(-7) M). In addition, [3H]leucyl-tRNA synthetase activity in the cytosol of osteoblastic cells was significantly increased by the addition of genistein (10(-6) and 10(-5) M) or daidzein (10(-5) M) into the enzyme reaction mixture. The present study demonstrates that genistein or daidzein can stimulate protein synthesis in osteoblastic MC3T3-E1 cells. The isoflavones may have a stimulatory effect on osteoblastic bone formation due to increasing protein synthesis.  相似文献   

16.
Activation of particular glutamate (Glu) receptors is shown to promote cellular differentiation toward maturation during osteoblastogenesis. In the present study, we have evaluated the possible modulation by Glu of cellular proliferation in osteoblastic cells endowed to proliferate for self-renewal and to differentiate toward matured osteoblasts. Exposure to Glu significantly suppressed the proliferation activity at a concentration over 500 microM without inducing cell death in osteoblastic MC3T3-E1 cells before differentiation. The suppression by Glu occurred in a manner sensitive to the prevention by either cystine or reduced glutathione. Expression of mRNA was for the first time shown with the cystine/Glu antiporter composed of xCT and 4F2hc subunits in these undifferentiated osteoblastic cells. A significant decrease was seen in intracellular total glutathione levels in undifferentiated MC3T3-E1 cells cultured with Glu, indeed, whereas the cellular proliferation activity was drastically decreased by the addition of the glutathione depleter cyclohexene-1-one and the glutathione biosynthesis inhibitor L-buthionine-[S,R]-sulfoximine, respectively. Exposure to Glu led to a significant increase in mRNA expression of nuclear factor E2 p45-related factor 2 (Nrf2) together with the generation of reactive oxygen species, while a significant decrease was seen in the proliferation activity in MC3T3-E1 cells with stable overexpression of Nrf2. These results suggest that Glu could suppress the cellular proliferation toward self-renewal through a mechanism associated with the upregulation of Nrf2 expression in association with the depletion of intracellular glutathione after promoting the retrograde operation of the cystine/Glu antiporter in undifferentiated MC3T3-E1 cells.  相似文献   

17.
18.
Xia Y  Zhang Y  Shi W  Liu S  Chen Y  Liang X  Ye Z 《Cellular immunology》2011,(2):413-417
Over-expression of megsin is associated with mesangial cell (MC) proliferation and extracellular matrix (ECM) accumulation. The underlying pathogenesis is unknown. This study demonstrate that over-expression of megsin induced incorporation of [3H]thymidine in MCs and PDGF-BB, TGF-β1 upregulation. Concentrations of PDGF-BB, TGF-β1 and type IV collagen in the culture medium of MCs transfected with megsin were higher than controls. Anti-PDGF-BB suppressed incorporation of [3H]thymidine in MCs transfected with megsin and mRNA expression of TGF-β1 in stable transformant MCs, suggesting that over-expression of megsin induces cell proliferation and ECM accumulation in MCs, upregulation of PDGF-BB and TGF-β1 is probably the main route involved in pathogenesis.  相似文献   

19.
Once thought to provide only structural support to tissues by acting as a scaffold to which cells bind, it is now widely recognized that the extracellular matrix (ECM) provides instructive signals that dictate cell behavior. Recently we demonstrated that mechanical cues intrinsic to the ECM directly regulate the behavior of pre-osteoblastic MC3T3-E1 cells. We hypothesized that one possible mechanism by which ECM compliance exerts its influence on osteogenesis is by modulating the mitogen-activated protein kinase (MAPK) pathway. To address this hypothesis, the differentiation of MC3T3-E1 cells cultured on poly(ethylene glycol) (PEG)-based model substrates with tunable mechanical properties was assessed. Alkaline phosphatase (ALP) levels at days 7 and 14 were found to be significantly higher in cells grown on stiffer substrates (423.9 kPa hydrogels and rigid tissue culture polystyrene (TCPS) control) than on a soft hydrogel (13.7 kPa). Osteocalcin (OCN) and bone sialoprotein (BSP) gene expression levels followed a similar trend. In parallel, MAPK activity was significantly higher in cells cultured on stiffer substrates at both time points. Inhibiting this activation pharmacologically, using PD98059, resulted in significantly lower ALP levels, OCN, and BSP gene expression levels on the hydrogels. Interestingly, the effectiveness of PD98059 was itself dependent on substrate stiffness, with marked inhibition of MAPK phosphorylation in cells grown on compliant hydrogels but insignificant reduction in cells grown on TCPS. Together, these data confirm a role for MAPK in the regulation of osteogenic differentiation by ECM compliance.  相似文献   

20.
细胞外基对组织细胞起支持、保护、营养作用,对细胞的增殖、分化有重要影响,在细胞和组织工程中,应该充分考虑细胞外基质的作用。本研究首先脱去培养板中融合培养的原代小鼠心肌成纤维细胞和成骨细胞,获得两种体外形成的细胞外基质包被的培养板,其中成骨细胞细胞外基质中含有骨形成蛋白2。然后将MC3T3-E1成骨前体细胞接种在这种培养板中,发现成纤维细胞胞外基质包被的培养板中的细胞增殖活性最高,而成骨细胞胞外基质包被的培养板中细胞的碱性磷酸酶活性、骨形成蛋白2和骨桥蛋白的相对蛋白表达量最高,细胞外钙沉积量比其他组高1倍左右。结果表明:包被在培养板上的这两种细胞外基质有不同的生物活性,成纤维细胞胞外基质可促进成骨前体细胞增殖,成骨细胞胞外基质可促进成骨前体细胞骨向分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号