首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

As the use of microarray technology becomes more prevalent it is not unusual to find several laboratories employing the same microarray technology to identify genes related to the same condition in the same species. Although the experimental specifics are similar, typically a different list of statistically significant genes result from each data analysis.  相似文献   

3.

Background  

Microarray technology is generating huge amounts of data about the expression level of thousands of genes, or even whole genomes, across different experimental conditions. To extract biological knowledge, and to fully understand such datasets, it is essential to include external biological information about genes and gene products to the analysis of expression data. However, most of the current approaches to analyze microarray datasets are mainly focused on the analysis of experimental data, and external biological information is incorporated as a posterior process.  相似文献   

4.

Background  

Low-level processing and normalization of microarray data are most important steps in microarray analysis, which have profound impact on downstream analysis. Multiple methods have been suggested to date, but it is not clear which is the best. It is therefore important to further study the different normalization methods in detail and the nature of microarray data in general.  相似文献   

5.

Background  

With the explosion in data generated using microarray technology by different investigators working on similar experiments, it is of interest to combine results across multiple studies.  相似文献   

6.

Background  

Gene set enrichment analysis (GSEA) is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. GSEA is especially useful when gene expression changes in a given microarray data set is minimal or moderate.  相似文献   

7.

Background  

Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models.  相似文献   

8.
9.

Background  

Gene expression profiling has the potential to unravel molecular mechanisms behind gene regulation and identify gene targets for therapeutic interventions. As microarray technology matures, the number of microarray studies has increased, resulting in many different datasets available for any given disease. The increase in sensitivity and reliability of measurements of gene expression changes can be improved through a systematic integration of different microarray datasets that address the same or similar biological questions.  相似文献   

10.

Background  

One of the important challenges in microarray analysis is to take full advantage of previously accumulated data, both from one's own laboratory and from public repositories. Through a comparative analysis on a variety of datasets, a more comprehensive view of the underlying mechanism or structure can be obtained. However, as we discover in this work, continual changes in genomic sequence annotations and probe design criteria make it difficult to compare gene expression data even from different generations of the same microarray platform.  相似文献   

11.

Background  

Reproducibility of results can have a significant impact on the acceptance of new technologies in gene expression analysis. With the recent introduction of the so-called next-generation sequencing (NGS) technology and established microarrays, one is able to choose between two completely different platforms for gene expression measurements. This study introduces a novel methodology for gene-ranking stability analysis that is applied to the evaluation of gene-ranking reproducibility on NGS and microarray data.  相似文献   

12.

Background  

Gene expression microarray is a powerful technology for genetic profiling diseases and their associated treatments. Such a process involves a key step of biomarker identification, which are expected to be closely related to the disease. A most important task of these identified genes is that they can be used to construct a classifier which can effectively diagnose disease and even recognize the disease subtypes. Binary classification, for example, diseased or healthy, in microarray data analysis has been successful, while multi-class classification, such as cancer subtyping, remains challenging.  相似文献   

13.

Background  

Statistical analysis of DNA microarray data provides a valuable diagnostic tool for the investigation of genetic components of diseases. To take advantage of the multitude of available data sets and analysis methods, it is desirable to combine both different algorithms and data from different studies. Applying ensemble learning, consensus clustering and cross-study normalization methods for this purpose in an almost fully automated process and linking different analysis modules together under a single interface would simplify many microarray analysis tasks.  相似文献   

14.

Background  

The assessment of data reproducibility is essential for application of microarray technology to exploration of biological pathways and disease states. Technical variability in data analysis largely depends on signal intensity. Within that context, the reproducibility of individual probe sets has not been hitherto addressed.  相似文献   

15.

Background  

cDNA microarray technology has emerged as a major player in the parallel detection of biomolecules, but still suffers from fundamental technical problems. Identifying and removing unreliable data is crucial to prevent the risk of receiving illusive analysis results. Visual assessment of spot quality is still a common procedure, despite the time-consuming work of manually inspecting spots in the range of hundreds of thousands or more.  相似文献   

16.

Background  

One of the main objectives of microarray analysis is to identify differentially expressed genes for different types of cells or treatments. Many statistical methods have been proposed to assess the treatment effects in microarray experiments.  相似文献   

17.

Background  

Microarray technology has made it possible to simultaneously measure the expression levels of large numbers of genes in a short time. Gene expression data is information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. Clustering is an important tool for finding groups of genes with similar expression patterns in microarray data analysis. However, hard clustering methods, which assign each gene exactly to one cluster, are poorly suited to the analysis of microarray datasets because in such datasets the clusters of genes frequently overlap.  相似文献   

18.

Background  

Tissue microarray (TMA) technology has been developed to facilitate large, genome-scale molecular pathology studies. This technique provides a high-throughput method for analyzing a large cohort of clinical specimens in a single experiment thereby permitting the parallel analysis of molecular alterations (at the DNA, RNA, or protein level) in thousands of tissue specimens. As a vast quantity of data can be generated in a single TMA experiment a systematic approach is required for the storage and analysis of such data.  相似文献   

19.

Background  

Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication.  相似文献   

20.

Background  

The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only [1]. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号