首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ionized calcium-binding adaptor molecule 1 (Iba1) with 147 amino acid residues has been identified as a calcium-binding protein, expressed specifically in microglia/macrophages, and is expected to be a key factor in membrane ruffling, which is a typical feature of activated microglia. We have determined the crystal structure of human Iba1 in a Ca(2+)-free form and mouse Iba1 in a Ca(2+)-bound form, to a resolution of 1.9 A and 2.1 A, respectively. X-ray structures of Iba1 revealed a compact, single-domain protein with two EF-hand motifs, showing similarity in overall topology to partial structures of the classical EF-hand proteins troponin C and calmodulin. In mouse Iba1, the second EF-hand contains a bound Ca(2+), but the first EF-hand does not, which is often the case in S100 proteins, suggesting that Iba1 has S100 protein-like EF-hands. The molecular conformational change induced by Ca(2+)-binding of Iba1 is different from that found in the classical EF-hand proteins and/or S100 proteins, which demonstrates that Iba1 has an unique molecular switching mechanism dependent on Ca(2+)-binding, to interact with target molecules.  相似文献   

2.
本文旨在研究1型糖尿病(type 1 diabetes mellitus,T1DM)小鼠前额叶皮层小胶质细胞的激活情况以及与神经退行性疾病相关的小胶质细胞新亚型(disease-associated microglia,DAM)标志性分子表达的变化。60只健康成年雄性C57BL/6J小鼠,随机分为正常对照(CON)组和T1DM组,每组30只。T1DM组小鼠腹腔注射链脲佐菌素(streptozocin,STZ)建立T1DM模型。模型构建成功后第8周通过Morris水迷宫检测小鼠空间学习记忆能力,通过免疫荧光染色法和Western blot检测小鼠前额叶皮层小胶质细胞数量及激活情况,通过RT-FQ-PCR法检测多个DAM标志性分子mRNA水平的变化。结果显示,与CON组相比,T1DM组小鼠空腹血糖明显升高,体重显著降低,水迷宫逃避潜伏期明显延长,差异均有统计学意义(P<0.05)。与CON组相比,T1DM组小鼠前额叶皮层Iba1蛋白表达水平上调,且小胶质细胞数目明显增多(P<0.05),胞体增大,呈现激活状态。同时,T1DM组小鼠前额叶皮层多个DAM标志性分子mRNA水平显著升高(P<0.05)。以上结果提示,T1DM小鼠前额叶皮层小胶质细胞被激活,且向DAM型转化。  相似文献   

3.
Ionized calcium binding adaptor molecule 1 (Iba1) is a microglia/macrophage-specific calcium-binding protein. Iba1 has the actin-bundling activity and participates in membrane ruffling and phagocytosis in activated microglia. In order to understand the Iba1-related intracellular signalling pathway in greater detail, we employed a yeast two-hybrid screen to isolate an Iba1-interacting molecule and identified another actin-bundling protein, L-fimbrin. In response to stimulation, L-fimbrin accumulated and co-localized with Iba1 in membrane ruffles induced by M-CSF-stimulation and phagocytic cups formed by IgG-opsonized beads in microglial cell line MG5. L-fimbrin was shown to associate with Iba1 in cell lysate of COS-7 expressing L-fimbrin and Iba1. By using purified proteins, direct binding of Iba1 to L-fimbrin was demonstrated by immunoprecipitation, glutathione S-transferase pull-down assays and ligand overlay assays. The binding of Iba1 was also found to increase the actin-bundling activity of L-fimbrin. These results indicate that Iba1 forms complexes with L-fimbrin in membrane ruffles and phagocytic cups, and suggest that Iba1 co-operates with L-fimbrin in modulating actin reorganization to facilitate cell migration and phagocytosis by microglia.  相似文献   

4.
Iba1 is a macrophage/microglia-specific calcium-binding protein that is involved in RacGTPase-dependent membrane ruffling and phagocytosis. In this study, we introduced Iba1 into Swiss 3T3 fibroblasts and demonstrated the enhancement of platelet-derived growth factor (PDGF)-induced membrane ruffling and chemotaxis. Wortmannin treatment did not completely suppressed this enhanced membrane ruffling in Iba1-expressing cells, whereas it did in Iba1-nonexpressing cells, suggesting that the enhancement is mediated through a phosphatidylinositol 3-kinase (PI3K)-independent signaling pathway. Porcine aorta endothelial cells transfected with expression constructs of Iba1 and PDGF receptor add-back mutants were used to analyze the signaling pathway responsible for the Iba1-induced enhancement of membrane ruffling. In the absence of Iba1 expression, PDGF did not induced membrane ruffling in cells expressing the Tyr-1021 receptor mutant, which is capable of activating phospholipase C-gamma (PLC-gamma) but not PI3K. In contrast, in the presence of Iba1 expression, membrane ruffling was formed in cells expressing the Tyr-1021 mutant. In addition, Rac was shown to be activated during membrane ruffling in cells expressing Iba1 and the Tyr-1021 mutant. Furthermore, dominant negative forms of PLC-gamma completely suppressed PDGF-induced Iba1-dependent membrane ruffling and Rac activation. These results indicate the existence of a novel signaling pathway where PLC-gamma activates Rac in a manner dependent on Iba1.  相似文献   

5.
The transmembrane chemokine CX3CL1 and its receptor CX3CR1 are thought to be involved in the trafficking of immune cells during an immune response and in the pathology of various human diseases including cancer. However, little is known about the expression and function of CX3CR1 in human glioma-infiltrating microglia/macrophages (GIMs), representing the major cellular stroma component of highly malignant gliomas. Here, we show that CX3CR1 is overexpressed at both the mRNA and protein level in solid human astrocytomas of different malignancy grades and in glioblastomas. CX3CR1 was localized in ionized calcium-binding adapter molecule 1 (Iba1) and CD11b/c positive GIMs in situ as shown by fluorescence microscopy. In accordance with this, freshly isolated human GIM-enriched fractions separated by CD11b MACS technology displayed high Iba1 and CX3CR1 mRNA expression levels in vitro. Moreover, cultured human GIMs responded to CX3CL1-triggered activation of CX3CR1 with adhesion and migration in vitro. Besides an increase in motility, CX3CL1 also enhanced expression of matrix metalloproteases 2, 9, and 14 in GIM fractions in vitro. These data indicate that the CX3CL1/CX3CR1 system has a crucial tumor-promoting role in human glioblastomas via its impact on glioma-infiltrating immune subsets.  相似文献   

6.
Microglia subpopulations were studied in mouse experimental autoimmune encephalomyelitis and toxoplasmic encephalitis. CNS inflammation was associated with the proliferation of CD11b(+) brain cells that exhibited the dendritic cell (DC) marker CD11c. These cells constituted up to 30% of the total CD11b(+) brain cell population. In both diseases CD11c(+) brain cells displayed the surface phenotype of myeloid DC and resided at perivascular and intraparenchymatic inflammatory sites. By lacking prominent phagocytic organelles, CD11c(+) cells from inflamed brain proved distinct from other microglia, but strikingly resembled bone marrow-derived DC and thus were identified as DC. This brain DC population comprised cells strongly secreting IL-12p70, whereas coisolated CD11c(-) microglia/brain macrophages predominantly produced TNF-alpha, GM-CSF, and NO. In comparison, the DC were more potent stimulators of naive or allogeneic T cell proliferation. Both DC and CD11c(-) microglia/macrophages from inflamed brain primed naive T cells from DO11.10 TCR transgenic mice for production of Th1 cytokines IFN-gamma and IL-2. Resting microglia that had been purified from normal adult brain generated immature DC upon exposure to GM-CSF, while CD40 ligation triggered terminal maturation. Consistently, a functional maturation of brain DC was observed to occur following the onset of encephalitis. In conclusion, these findings indicate that in addition to inflammatory macrophage-like brain cells, intraparenchymatical DC exist in autoimmune and infectious encephalitis. These DC functionally mature upon disease onset and can differentiate from resident microglia. Their emergence, maturation, and prolonged activity within the brain might contribute to the chronicity of intracerebral Th1 responses.  相似文献   

7.
The acrosomal process of Limulus sperm is an 80-microns long finger of membrane supported by a crystalline bundle of actin filaments. The filaments in this bundle are crosslinked by a 102-kD protein, scruin present in a 1:1 molar ratio with actin. Recent image reconstruction of scruin decorated actin filaments at 13-A resolution shows that scruin is organized into two equally sized domains bound to separate actin subunits in the same filament. We have cloned and sequenced the gene for scruin from a Limulus testes cDNA library. The deduced amino acid sequence of scruin reflects the domain organization of scruin: it consists of a tandem pair of homologous domains joined by a linker region. The domain organization of scruin is confirmed by limited proteolysis of the purified acrosomal process. Three different proteases cleave the native protein in a 5-kD Protease-sensitive region in the middle of the molecule to generate an NH2-terminal 47-kD and a COOH-terminal 56-kD protease-resistant domains. Although the protein sequence of scruin has no homology to any known actin-binding protein, it has similarities to several proteins, including four open reading frames of unknown function in poxviruses, as well as kelch, a Drosophila protein localized to actin-rich ring canals. All proteins that show homologies to scruin are characterized by the presence of an approximately 50-amino acid residue motif that is repeated between two and seven times. Crystallographic studies reveal this motif represents a four beta-stranded fold that is characteristic of the "superbarrel" structural fold found in the sialidase family of proteins. These results suggest that the two domains of scruin seen in EM reconstructions are superbarrel folds, and they present the possibility that other members of this family may also bind actin.  相似文献   

8.
9.

Background

HIV-1-infected and/or immune-activated microglia and macrophages are pivotal in the pathogenesis of HIV-1-associated neurocognitive disorders (HAND). Glutaminase, a metabolic enzyme that facilitates glutamate generation, is upregulated and may play a pathogenic role in HAND. Our previous studies have demonstrated that glutaminase is released to the extracellular fluid during HIV-1 infection and neuroinflammation. However, key molecular mechanisms that regulate glutaminase release remain unknown. Recent advances in understanding intercellular trafficking have identified microvesicles (MVs) as a novel means of shedding cellular contents. We posit that during HIV-1 infection and immune activation, microvesicles may mediate glutaminase release, generating excessive and neurotoxic levels of glutamate.

Results

MVs isolated through differential centrifugation from cell-free supernatants of monocyte-derived macrophages (MDM) and BV2 microglia cell lines were first confirmed in electron microscopy and immunoblotting. As expected, we found elevated number of MVs, glutaminase immunoreactivities, as well as glutaminase enzyme activity in the supernatants of HIV-1 infected MDM and lipopolysaccharide (LPS)-activated microglia when compared with controls. The elevated glutaminase was blocked by GW4869, a neutral sphingomyelinase inhibitor known to inhibit MVs release, suggesting a critical role of MVs in mediating glutaminase release. More importantly, MVs from HIV-1-infected MDM and LPS-activated microglia induced significant neuronal injury in rat cortical neuron cultures. The MV neurotoxicity was blocked by a glutaminase inhibitor or GW4869, suggesting that the neurotoxic potential of HIV-1-infected MDM and LPS-activated microglia is dependent on the glutaminase-containing MVs.

Conclusions

These findings support MVs as a potential pathway/mechanism of excessive glutamate generation and neurotoxicity in HAND and therefore MVs may serve as a novel therapeutic target.
  相似文献   

10.
The coronavirus mouse hepatitis virus (MHV) induces a minimal type I interferon (IFN) response in several cell types in vitro despite the fact that the type I IFN response is important in protecting the mouse from infection in vivo. When infected with MHV, mice deficient in IFN-associated receptor expression (IFNAR−/−) became moribund by 48 h postinfection. MHV also replicated to higher titers and exhibited a more broad tissue tropism in these mice, which lack a type I IFN response. Interestingly, MHV induced IFN-β in the brains and livers, two main targets of MHV replication, of infected wild-type mice. MHV infection of primary cell cultures indicates that hepatocytes are not responsible for the IFN-β production in the liver during MHV infection. Furthermore, macrophages and microglia, but not neurons or astrocytes, are responsible for IFN-β production in the brain. To determine the pathway by which MHV is recognized in macrophages, IFN-β mRNA expression was quantified following MHV infection of a panel of primary bone marrow-derived macrophages generated from mice lacking different pattern recognition receptors (PRRs). Interestingly, MDA5, a PRR thought to recognize primarily picornaviruses, was required for recognition of MHV. Thus, MHV induces type I IFN in macrophages and microglia in the brains of infected animals and is recognized by an MDA5-dependent pathway in macrophages. These findings suggest that secretion of IFN-β by macrophages and microglia plays a role in protecting the host from MHV infection of the central nervous system.  相似文献   

11.
12.
Activation of 5′-AMP-activated protein kinase (AMPK) is believed to be the mechanism by which the pharmaceuticals, metformin and phenformin, exert their beneficial effects for treatment of type 2 diabetes. These biguanide drugs elevate 5′-AMP, which allosterically activates AMPK and promotes phosphorylation on Thr172 of AMPK catalytic α subunits. Although kinases phosphorylating this site have been identified, phosphatases that dephosphorylate it are unknown. The aim of this study is to identify protein phosphatase(s) that dephosphorylate AMPKα-Thr172 within cells. Our initial data indicated that members of the protein phosphatase ce:sup>/ce:sup>/Mn2+-dependent (PPM) family and not those of the PPP family of protein serine/threonine phosphatases may be directly or indirectly inhibited by phenformin. Using antibodies raised to individual Ppm phosphatases that facilitated the assessment of their activities, phenformin stimulation of cells was found to decrease the ce:sup>/ce:sup>/Mn2+-dependent protein serine/threonine phosphatase activity of Ppm1E and Ppm1F, but not that attributable to other PPM family members, including Ppm1A/PP2Cα. Depletion of Ppm1E, but not Ppm1A, using lentiviral-mediated stable gene silencing, increased AMPKα-Thr172 phosphorylation approximately three fold in HEK293 cells. In addition, incubation of cells with low concentrations of phenformin and depletion of Ppm1E increased AMPK phosphorylation synergistically. Ppm1E and the closely related Ppm1F interact weakly with AMPK and assays with lysates of cells stably depleted of Ppm1F suggests that this phosphatase contributes to dephosphorylation of AMPK. The data indicate that Ppm1E and probably PpM1F are in cellulo AMPK phosphatases and that Ppm1E is a potential anti-diabetic drug target.  相似文献   

13.
14.
A 17 kDa polypeptide found in association with actin in cellular extracts of Dictyostelium discoideum was identified as a proteolytic fragment of eEF1beta. Antibody elicited against the 17 kDa protein reacted with a single 29 kDa polypeptide in Dictyostelium, indicating that the 17 kDa peptide arises from degradation of a larger precursor. The cDNA isolated from a Dictyostelium library using this antibody as a probe encodes Dictyostelium elongation factor 1beta. Amino acid degradation of the 17 kDa protein fragment confirmed the identity of the protein as eEF1beta. Direct interaction of eEF1beta with actin in vitro was further demonstrated in mixtures of actin with the 17 kDa protein fragment of Dictyostelium eEF1beta, recombinant preparations of Dictyostelium eEF1beta expressed in Escherichia coli, and the intact eEF1betagamma complex purified from wheat germ. Localization of eEF1beta in Dictyostelium by immunofluorescence microscopy reveals both diffuse cytoplasmic staining, and some concentration in the cortical and hyaline cytoplasm. The results support the existence of physical and functional interactions of the translation apparatus with the cytoskeleton, and suggest that eEF1beta may function in a dual role both to promote the elongation phase of protein synthesis, and to interact with cytoplasmic actin.  相似文献   

15.
16.
Microglia (brain resident macrophages) accumulate in malignant gliomas and instead of initiating the anti-tumor response, they switch to a pro-invasive phenotype, support tumor growth, invasion, angiogenesis and immunosuppression by release of cytokines/chemokines and extracellular matrix proteases. Using immunofluorescence and flow cytometry, we demonstrate an early accumulation of activated microglia followed by accumulation of macrophages in experimental murine EGFP-GL261 gliomas. Those cells acquire the alternative phenotype, as evidenced by evaluation of the production of ten pro/anti-inflammatory cytokines and expression profiling of 28 genes in magnetically-sorted CD11b(+) cells from tumor tissues. Furthermore, we show that infiltration of implanted gliomas by amoeboid, Iba1-positive cells can be reduced by a systematically injected cyclosporine A (CsA) two or eight days after cell inoculation. The up-regulated levels of IL-10 and GM-CSF, increased expression of genes characteristic for the alternative and pro-invasive phenotype (arg-1, mt1-mmp, cxcl14) in glioma-derived CD11b(+) cells as well as enhanced angiogenesis and tumor growth were reduced in CsA-treated mice. Our findings define for the first time kinetics and biochemical characteristics of glioma-infiltrating microglia/macrophages. Inhibition of the alternative activation of tumor-infiltrating macrophages significantly reduced tumor growth. Thus, blockade of microglia/macrophage infiltration and their pro-invasive functions could be a novel therapeutic strategy in malignant gliomas.  相似文献   

17.
18.
Angiopoietin like protein 4 (ANGPTL4) inhibits lipoprotein lipase (LPL) activity. Previous studies have shown that Toll-like Receptor (TLR) activation increases serum levels of ANGPTL4 and expression of ANGPTL4 in liver, heart, muscle, and adipose tissue in mice. ANGPTL4 is expressed in macrophages and is induced by inflammatory saturated fatty acids. The absence of ANGPTL4 leads to the increased uptake of pro-inflammatory saturated fatty acids by macrophages in the mesentery lymph nodes due to the failure of ANGPTL4 to inhibit LPL activity, resulting in peritonitis, intestinal fibrosis, weight loss, and death. Here we determined the effect of TLR activation on the expression of macrophage ANGPTL4. LPS treatment resulted in a 70% decrease in ANGPTL4 expression in mouse spleen, a tissue enriched in macrophages. In mouse peritoneal macrophages, LPS treatment also markedly decreased ANGPTL4 expression. In RAW cells, a macrophage cell line, LPS, zymosan, poly I:C, and imiquimod all inhibited ANGPTL4 expression. In contrast, neither TNF, IL-1, nor IL-6 altered ANGPTL4 expression. Finally, in cholesterol loaded macrophages, LPS treatment still decreased ANGPTL4 expression. Thus, while in most tissues ANGPTL4 expression is stimulated by inflammatory stimuli, in macrophages TLR activators inhibit ANGPTL4 expression, which could lead to a variety of down-stream effects important in host defense and wound repair.  相似文献   

19.
IFN gamma/LPS treatment increases macrophage tumoricidal and microbicidal activity and inhibits CSF-1-induced macrophage proliferation. The mechanism underlying the latter effect was investigated in the CSF-1-dependent mouse macrophage cell line, BAC-1.2F5. IFN-gamma and LPS together dramatically reduced the total number of CSF-1 receptors (CSF-1R) via selective degradation of the cell surface form. Processing and transport of intracellular CSF-1R to the cell surface were unaffected. IFN-gamma alone had no effect but significantly enhanced LPS-induced CSF-1R down-regulation. The reduction in CSF-1R number was protein kinase C-dependent and involved changes in serine phosphorylation of the receptor at different sites. CSF-1R down-modulation by this mechanism may be important in switching off the energy-consuming processes of CSF-1R-mediated proliferation and chemotaxis in activated macrophages.  相似文献   

20.
Microglial activation is implicated in the neurotoxicity of neurodegenerative diseases. Raised intracerebral levels of albumin are associated with the pathology of Alzheimer's disease, multiple sclerosis, and stroke where blood-brain barrier damage is evident. We report here that treatment of primary cultured microglia and the N9 microglial cell line with pure albumin, or albumin in which fatty acids and immunoglobulins remain attached (fraction V), induced a rise in intracellular calcium. This rise in intracellular calcium was mediated via Src tyrosine kinase and phospholipase C. The albumin-induced calcium response was coupled to microglial proliferation, which was prevented by BAPTA, U73122 or PP2 but not mimicked by thapsigargin. In contrast, peritoneal macrophages were resistant to albumin- or fraction V-induced calcium responses and proliferation, whilst primary cultured astrocytes or the TSA-3 astrocyte cell line were responsive to fraction V albumin but not pure albumin. Furthermore, cerebellar granule neurones did not respond to albumin. These data suggest that albumin may play a role in microglial activation in pathological situations involving blood-brain barrier impairment, and that the specific responses of microglia to albumin allow a distinction to be made between the signalling responses of microglia, blood-borne macrophages, astrocytes and neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号