首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both the secAcsR11 and DeltasecG::kan mutations cause cold-sensitive growth, although the growth defect due to the latter mutation occurs in a strain-specific manner. Overexpression of pgsA encoding phosphatidylglycerophosphate synthase suppresses the growth defects of the two mutants. We investigated the mechanism underlying the pgsA-dependent suppression of the two mutations using purified mutant SecA and inverted membrane vesicles (IMVs) prepared from pgsA-overexpressing cells. The acidic phospholipid content increased by about 10% upon pgsA overexpression. This increase resulted in the stimulation of proOmpA translocation only when mutant SecA or SecG-depleted IMVs were used. The translocation-coupled ATPase activity of SecA was significantly defective with the mutant SecA or SecG-depleted IMVs, but it recovered to a near normal level when the acidic phospholipid level was increased. The stimulation of ATPase activity was observed only at low temperature. The steady-state level of membrane-inserted SecA was low with the mutant SecA or SecG-depleted IMVs, and it decreased further upon the increase in the acidic phospholipid content. However, the level of SecA insertion markedly increased upon the inhibition of SecA deinsertion by the addition of beta,gamma-imido adenosine 5'-triphosphate (AMP-PNP), especially with IMVs containing increased levels of acidic phospholipids. These results indicate that the increase in the level of acidic phospholipids stimulates the SecA cycle in the two mutants by facilitating both the insertion and deinsertion of SecA.  相似文献   

2.
SecG, a membrane component of the protein translocation apparatus of Escherichia coli, undergoes membrane topology inversion, which is coupled to the membrane insertion and deinsertion cycle of SecA. Eighteen SecG derivatives possessing a single cysteine residue at various positions were constructed and expressed in a secG null mutant. All the SecG-Cys derivatives retained the SecG function, and stimulated protein translocation both in vivo and in vitro. Inverted membrane vesicles containing a SecG-Cys derivative were labeled with a membrane-permeable or -impermeable sulfhydryl reagent before or after solubilization with a detergent. The accessibility of these reagents to the cysteine residue of each derivative determined the topological arrangement of SecG in the membrane. Derivatives having the cysteine residue in the periplasmic region each existed as a homodimer crosslinked through disulfide bonds, indicating that two SecG molecules closely co-exist in a single translocation machinery. The crosslinking did not abolish the SecG function and the crosslinked SecG dimer underwent topology inversion upon protein translocation.  相似文献   

3.
SecG, a subunit of the protein translocon, undergoes a cycle of topology inversion. To further examine the role of this topology inversion, we analyzed the activity of membrane vesicles carrying a SecG-PhoA fusion protein (SecG-PhoA inverted membrane vesicles (IMVs)). In the absence of externally added SecA, SecG-PhoA IMVs were as active in protein translocation as SecG(+) IMVs per SecA. Consistent with this observation, insertion of membrane-bound SecA into SecG-PhoA IMVs was normally observed. On the other hand, externally added SecA did not affect the activity of SecG-PhoA IMVs, but it caused >10-fold stimulation of the translocation activity of SecG(+) IMVs, indicating that the topology inversion of SecG, which cannot occur in SecG-PhoA IMVs, is essential for cytosolic SecA-dependent stimulation of protein translocation. SecG-PhoA IMVs generated a 46-kDa fragment of SecA upon trypsin treatment. The accumulation of this membrane-inserted SecA in the SecG-PhoA IMVs was responsible for the loss of the soluble SecA-dependent stimulation. Moreover, fixation of the inverted SecG topology was found to be dependent on soluble SecA. The dual functions of SecG in protein translocation will be discussed.  相似文献   

4.
SecA is a translocation ATPase that drives protein translocation. D209N SecA, a dominant-negative mutant, binds ATP but is unable to hydrolyze it. This mutant was inactive to proOmpA translocation. However, it generated a translocation intermediate of 18 kDa. Further addition of wild-type SecA caused its translocation into either mature OmpA or another intermediate of 28 kDa that can be translocated into mature by a proton motive force. The addition of excess D209N SecA during translocation caused a topology inversion of SecG. Moreover, an intermediate of SecG inversion was identified when wild-type and D209N SecA were used in the same amounts. These results indicate that multiple SecA molecules drive translocation across a single translocon with SecG inversion. Here, we propose a revised model of proOmpA translocation in which a single catalytic cycle of SecA causes translocation of 10-13 kDa with ATP binding and hydrolysis, and SecG inversion is required when the next SecA cycle begins with additional ATP hydrolysis.  相似文献   

5.
The secY205 mutant is cold-sensitive for protein export, with an in vitro defect in supporting ATP- and preprotein-dependent insertion of SecA into the membrane. We characterized SecA81 with a Gly516 to Asp substitution near the minor ATP-binding region, which suppresses the secY205 defect at low temperature and exhibits an allele-specific synthetic defect with the same SecY alteration at 42 degrees C. The overproduced SecA81 aggregated in vivo at temperatures above 37 degrees C. Purified SecA81 exhibited markedly enhanced intrinsic and membrane ATPase activities at 30 degrees C, while it was totally inactive at 42 degrees C. The trypsin digestion patterns indicated that SecA81 has some disorder in the central region of SecA, which encompasses residues 421-575. This conformational abnormality may result in unregulated ATPase at low temperature as well as the thermosensitivity of the mutant protein. In the presence of both proOmpA and the wild-type membrane vesicles, however, the thermosensitivity was alleviated, and SecA81 was able to catalyze significant levels of proOmpA-stimulated ATP hydrolysis as well as proOmpA translocation at 42 degrees C. While SecA81 was able to overcome the SecY205 defect at low temperature, the SecY205 membrane vesicles could not significantly support the translocation ATPase or the proOmpA translocation activity of SecA81 at 42 degrees C. The inactivated SecA81 molecules seemed to jam the translocase since it interfered with translocase functions at 42 degrees C. Based on these results, we propose that under preprotein-translocating conditions, the SecYEG channel can stabilize and activate SecA, and that this aspect is defective for the SecA81-SecY205 combination. The data also suggest that the conformation of the central region of SecA is important for the regulation of ATP hydrolysis and for the productive interaction of SecA with SecY.  相似文献   

6.
SecB maintains the structures of a subset of precursor proteins competent for translocation across the Escherichia coli cytoplasmic membrane. SecG, a membrane component of the translocation machinery, stimulates protein translocation by undergoing the cycle of membrane topology inversion. Null mutants of secB and secG are unable to form isolated colonies on rich medium and at low temperature respectively. A 3.2 kb DNA fragment carrying the secB–gpsA region on a multicopy plasmid was found to suppress the null mutation of either gene. However, subcloning of the DNA fragment revealed that secB is not involved in the suppression of either mutation. Instead, gpsA located downstream from the secB gene was found to be responsible for the suppression of both mutations. The activity of the gpsA -encoded sn -glycerol-3-phosphate dehydrogenase, which is involved in phospholipid synthesis, was significantly lower in the secB null mutant than in the wild type, presumably because of a polar effect. Suppression of the secB null mutation required the wild-type level of GpsA activity. In contrast, overexpression of the enzyme was essential for suppression of the secG null mutation. Moreover, the gpsA -dependent suppression of the secG null mutation occurred only on rich medium, i.e. not on minimal medium. These results indicate that the SecB function is dispensable even in rich medium, and further demonstrate that overexpression of enzymes involved in phospholipid synthesis partly compensates for the SecG function.  相似文献   

7.
Kato Y  Nishiyama K  Tokuda H 《FEBS letters》2003,550(1-3):114-118
SecA and an apparatus comprising SecYEG and SecDF-YajC complexes catalyze protein translocation across the Escherichia coli membrane. SecDF-YajC and SecG facilitate membrane insertion of SecA, which is the driving force for protein translocation. Here we report that SecDF-YajC depletion together with SecG depletion nearly completely inhibits protein translocation both in vivo and in vitro, although SecDF-YajC had been thought to be unnecessary for in vitro translocation. The level of SecG in membranes decreased to about half upon SecDF-YajC depletion and recovered to a normal level when SecDF-YajC was expressed. SecDF-YajC inhibited disulfide bond formation between two SecG molecules possessing a single cysteine residue. These results suggest functional interaction between SecDF-YajC and SecG.  相似文献   

8.
Bacterial protein translocation is mediated by translocase, a multisubunit membrane protein complex that consists of a peripheral ATPase SecA and a preprotein-conducting channel with SecY, SecE, and SecG as subunits. Like Escherichia coli SecG, the Bacillus subtilis homologue, YvaL, dramatically stimulated the ATP-dependent translocation of precursor PhoB (prePhoB) by the B. subtilis SecA-SecYE complex. To systematically determine the functional exchangeability of translocase subunits, all of the relevant combinations of the E. coli and B. subtilis secY, secE, and secG genes were expressed in E. coli. Hybrid SecYEG complexes were overexpressed at high levels. Since SecY could not be overproduced without SecE, these data indicate a stable interaction between the heterologous SecY and SecE subunits. E. coli SecA, but not B. subtilis SecA, supported efficient ATP-dependent translocation of the E. coli precursor OmpA (proOmpA) into inner membrane vesicles containing the hybrid SecYEG complexes, if E. coli SecY and either E. coli SecE or E. coli SecG were present. Translocation of B. subtilis prePhoB, on the other hand, showed a strict dependence on the translocase subunit composition and occurred efficiently only with the homologous translocase. In contrast to E. coli SecA, B. subtilis SecA binds the SecYEG complexes only with low affinity. These results suggest that each translocase subunit contributes in an exclusive manner to the specificity and functionality of the complex.  相似文献   

9.
R J Cabelli  L Chen  P C Tai  D B Oliver 《Cell》1988,55(4):683-692
The soluble and membrane components of an E. coli in vitro protein translocation system prepared from a secA amber mutant, secA13[Am], contain reduced levels of SecA and are markedly defective in both the cotranslational and posttranslational translocation of OmpA and alkaline phosphatase into membrane vesicles. Moreover, the removal of SecA from soluble components prepared from a wild-type strain by passage through an anti-SecA antibody column similarly abolishes protein translocation. Translocation activity is completely restored by addition of submicrogram amounts of purified SecA protein, implying that the observed defects are solely related to loss of SecA function. Interestingly, the translocation defect can be overcome by reconstitution of SecA into SecA-depleted membranes, suggesting that SecA is an essential, membrane-associated translocation factor.  相似文献   

10.
Recent evidence suggests that in Escherichia coli, SecA/SecB and signal recognition particle (SRP) are constituents of two different pathways targeting secretory and inner membrane proteins to the SecYEG translocon of the plasma membrane. We now show that a secY mutation, which compromises a functional SecY-SecA interaction, does not impair the SRP-mediated integration of polytopic inner membrane proteins. Furthermore, under conditions in which the translocation of secretory proteins is strictly dependent on SecG for assisting SecA, the absence of SecG still allows polytopic membrane proteins to integrate at the wild-type level. These results indicate that SRP-dependent integration and SecA/SecB-mediated translocation do not only represent two independent protein delivery systems, but also remain mechanistically distinct processes even at the level of the membrane where they engage different domains of SecY and different components of the translocon. In addition, the experimental setup used here enabled us to demonstrate that SRP-dependent integration of a multispanning protein into membrane vesicles leads to a biologically active enzyme.  相似文献   

11.
SecG is an auxiliary protein in the Sec-dependent protein export pathway of Escherichia coli. Although the precise function of SecG is unknown, it stimulates translocation activity and has been postulated to enhance the membrane insertion-deinsertion cycle of SecA. Deletion of secG was initially reported to result in a severe export defect and cold sensitivity. Later results demonstrated that both of these phenotypes were strain dependent, and it was proposed that an additional mutation was required for manifestation of the cold-sensitive phenotype. The results presented here demonstrate that the cold-sensitive secG deletion strain also contains a mutation in glpR that causes constitutive expression of the glp regulon. Introduction of both the glpR mutation and the secG deletion into a wild-type strain background produced a cold-sensitive phenotype, confirming the hypothesis that a second mutation (glpR) contributes to the cold-sensitive phenotype of secG deletion strains. It was speculated that the glpR mutation causes an intracellular depletion of glycerol-3-phosphate due to constitutive synthesis of GlpD and subsequent channeling of glycerol-3-phosphate into metabolic pathways. In support of this hypothesis, it was demonstrated that addition of glycerol-3-phosphate to the growth medium ameliorated the cold sensitivity, as did introduction of a glpD mutation. This depletion of glycerol-3-phosphate is predicted to limit phospholipid biosynthesis, causing an imbalance in the levels of membrane phospholipids. It is hypothesized that this state of phospholipid imbalance imparts a dependence on SecG for proper function or stabilization of the translocation apparatus.  相似文献   

12.
G Matsumoto  T Yoshihisa    K Ito 《The EMBO journal》1997,16(21):6384-6393
SecA, the preprotein-driving ATPase in Escherichia coli, was shown previously to insert deeply into the plasma membrane in the presence of ATP and a preprotein; this movement of SecA was proposed to be mechanistically coupled with preprotein translocation. We now address the role played by SecY, the central subunit of the membrane-embedded heterotrimeric complex, in the SecA insertion reaction. We identified a secY mutation (secY205), affecting the most carboxyterminal cytoplasmic domain, that did not allow ATP and preprotein-dependent productive SecA insertion, while allowing idling insertion without the preprotein. Thus, the secY205 mutation might affect the SecYEG 'channel' structure in accepting the preprotein-SecA complex or its opening by the complex. We isolated secA mutations that allele-specifically suppressed the secY205 translocation defect in vivo. One mutant protein, SecA36, with an amino acid alteration near the high-affinity ATP-binding site, was purified and suppressed the in vitro translocation defect of the inverted membrane vesicles carrying the SecY205 protein. The SecA36 protein could also insert into the mutant membrane vesicles in vitro. These results provide genetic evidence that SecA and SecY specifically interact, and show that SecY plays an essential role in insertion of SecA in response to a preprotein and ATP and suggest that SecA drives protein translocation by inserting into the membrane in vivo.  相似文献   

13.
S Bost  D Belin 《The EMBO journal》1995,14(18):4412-4421
The signal sequence of the murine serine protease inhibitor PAI-2 promotes alkaline phosphatase export to the E. coli periplasm. However, high level expression of this chimeric protein interferes with cell growth. Since most suppressors of this toxic phenotype map to secA and secY, growth arrest results from a defective interaction of the chimeric protein with the export machinery. We have characterized suppressors which map in secG, a newly defined gene of the export machinery. All single amino acid substitutions map to three adjacent codons. These secG mutants have a weak Sec phenotype, as determined by their effect on export mediated by wild-type and mutant signal sequences. Whilst a secG disruption allele also confers a weak Sec phenotype, it does not suppress the toxicity of the chimeric protein. This difference results from a selective effect of the secG suppressors on the kinetics of export mediated by the PAI-2 signal sequence. Using a malE signal sequence mutant, which has a Mal-phenotype in secG mutant strains, we have isolated extragenic Mal+ suppressors. Most suppressors map to secY, and several are allele-specific. Finally, SecG overexpression accelerates the kinetics of protein export, suggesting that there are two types of functional translocation complexes: with or without SecG.  相似文献   

14.
A cold-sensitive secY mutant (secY125) with an amino acid substitution in the first periplasmic domain causes in vivo retardation of protein export. Inverted membrane vesicles prepared from this mutant were as active as the wild-type membrane vesicles in translocation of a minute amount of radioactive preprotein. The mutant membrane also allowed enhanced insertion of SecA, and this SecA insertion was dependent on the SecD and SecF functions. These and other observations suggested that the early events in translocation, such as SecA-dependent insertion of the signal sequence region, is actually enhanced by the SecY125 alteration. In contrast, since the mutant membrane vesicles had decreased capacity to translocate chemical quantity of pro-OmpA and since they were readily inactivated by pretreatment of the vesicles under the conditions in which a pro-OmpA translocation intermediate once accumulated, the late translocation functions appear to be impaired. We conclude that this periplasmic secY mutation causes unbalanced early and late functions in translocation, compromising the translocase's ability to catalyze multiple rounds of reactions.  相似文献   

15.
SecG stimulates protein translocation in Escherichia coli by facilitating the membrane insertion-deinsertion cycle of SecA. SecG was previously shown to undergo membrane topology inversion, since SecA-dependent protein translocation renders the membrane-protected region of SecG sensitive to external proteases. To examine this topology inversion in more detail without protease-treatment, SecG derivatives with a single cysteine residue at various positions were labeled in the presence and absence of protein translocation with a membrane impermeable SH reagent, 4-acetamido-4'-maleimidylstilbene-2-2'-disulfonic acid (AMS). Treatment of spheroplasts with AMS revealed that a cysteine residue in the cytoplasmic region of SecG could be labeled from the periplasm side only in the presence of protein translocation, whereas a cytoplasmic protein, elongation factor, Tu, remained unlabeled. Treatment of inverted membrane vesicles with AMS also revealed that cysteine residues in the periplasmic region were labeled from the cytoplasmic side of membranes only when protein translocation was in progress. This labeling required ATP, SecA and a precursor protein, and became more efficient as the position of the cysteine residue became closer to the C-terminus. Crosslinking analyses revealed that the interaction between SecG and SecA in membranes markedly increases when SecA and SecG undergo membrane-insertion and topology inversion, respectively. Thus, the two most dynamic components of the translocation machinery were found for the first time to interact with each other when both undergo conformational changes.  相似文献   

16.
F Duong  W Wickner 《The EMBO journal》1997,16(10):2756-2768
Escherichia coli preprotein translocase contains a membrane-embedded trimeric complex of SecY, SecE and SecG (SecYEG) and the peripheral SecA protein. SecYE is the conserved functional 'core' of the SecYEG complex. Although sufficient to provide sites for high-affinity binding and membrane insertion of SecA, and for its activation as a preprotein-dependent ATPase, SecYE has only very low capacity to support translocation. The proteins encoded by the secD operon--SecD, SecF and YajC--also form an integral membrane heterotrimeric complex (SecDFyajC). Physical and functional studies show that these two trimeric complexes are associated to form SecYEGDFyajC, the hexameric integral membrane domain of the preprotein translocase 'holoenzyme'. Either SecG or SecDFyajC can support the translocation activity of SecYE by facilitating the ATP-driven cycle of SecA membrane insertion and de-insertion at different stages of the translocation reaction. Our findings show that each of the prokaryote-specific subunits (SecA, SecG and SecDFyajC) function together to promote preprotein movement at the SecYE core of the translocase.  相似文献   

17.
Protein export in Escherichia coli is mediated by translocase, a multisubunit membrane protein complex with SecA as the peripheral subunit and the SecY, SecE, and SecG proteins as the integral membrane domain. In the gram-positive bacterium Bacillus subtilis, SecA, SecY, and SecE have been identified through genetic analysis. Sequence comparison of the Bacillus chromosome identified a potential homologue of SecG, termed YvaL. A chromosomal disruption of the yvaL gene results in mild cold sensitivity and causes a beta-lactamase secretion defect. The cold sensitivity is exacerbated by overexpression of the secretory protein alpha-amylase, whereas growth and beta-lactamase secretion are restored by coexpression of yvaL or the E. coli secG gene. These results indicate that the yvaL gene codes for a protein that is functionally homologous to SecG.  相似文献   

18.
The chaperone SecB keeps precursor proteins in a translocation-competent state and targets them to SecA at the translocation sites in the cytoplasmic membrane of Escherichia coli. SecA is thought to recognize SecB via its carboxy-terminus. To determine the minimal requirement for a SecB-binding site, fusion proteins were created between glutathione-S-transferase and different parts of the carboxy-terminus of SecA and analysed for SecB binding. A strikingly short amino acid sequence corresponding to only the most distal 22 aminoacyl residues of SecA suffices for the authentic binding of SecB or the SecB-precursor protein complex. SecAN880, a deletion mutant that lacks this highly conserved domain, still supports precursor protein translocation but is unable to bind SecB. Heterodimers of wild-type SecA and SecAN880 are defective in SecB binding, demonstrating that both carboxy-termini of the SecA dimer are needed to form a genuine SecB-binding site. SecB is released from the translocase at a very early stage in protein translocation when the membrane-bound SecA binds ATP to initiate translocation. It is concluded that the SecB-binding site on SecA is confined to the extreme carboxy-terminus of the SecA dimer, and that SecB is released from this site at the onset of translocation.  相似文献   

19.
K Nishiyama  M Hanada    H Tokuda 《The EMBO journal》1994,13(14):3272-3277
The Escherichia coli cytoplasmic membrane protein, p12, stimulates the protein translocation activity reconstituted with SecY, SecE and SecA. The gene encoding p12, which is located at 69 min on the E. coli chromosome, was deleted to examine the role of p12 in protein translocation in vivo. The deletion strain exhibited cold-sensitive growth. Pulse-chase experiments revealed that precursors of outer membrane protein A, maltose binding protein and beta-lactamase accumulated at 20 degrees C but not at 37 degrees C. The deletion strain harboring a plasmid which carries the gene encoding p12 under the control of the araBAD promoter was able to grow in the cold when p12 was expressed with the addition of arabinose. Furthermore, the accumulated precursors were rapidly processed to the mature forms upon the expression of p12. Immunoblot analysis revealed the steady-state accumulation of precursor proteins at 20 degrees C, whereas the accumulation was only marginal at 37 degrees C, indicating that the function of p12 is more critical at 20 degrees C than at 37 degrees C. Finally, proteoliposomes were reconstituted with or without p12 to demonstrate that the stimulation of the activity by p12 increases with a decrease in temperature. From these results, we concluded that p12 is directly involved in protein translocation in E. coli and plays a critical role in the cold. We propose the more systematic name, SecG, for p12.  相似文献   

20.
The M13 procoat protein serves as the paradigm for the Sec-independent membrane insertion pathway. This protein is inserted into the inner membrane of Escherichia coli with two hydrophobic regions and a central periplasmic loop region of 20 amino acid residues. Extension of the periplasmic loop region renders M13 procoat membrane insertion Sec-dependent. Loop regions with 118 or more residues required SecA and SecYEG and were efficiently translocated in vivo. Two mutants having loop regions of 80 and 100 residues, respectively, interacted with SecA but failed to activate the membrane translocation ATPase of SecA in vitro. Similarly, a procoat mutant with two additional glutamyl residues in the loop region showed binding to SecA but did not stimulate the ATPase. The three mutants were also defective for precursor-stimulated binding of SecA to the membrane surface. Remarkably, the mutant proteins act as competitive inhibitors of the Sec translocase. This suggests that the region to be translocated is sensed by SecA but the activation of the SecA translocation ATPase is only successful for substrates with a minimum length of the translocated region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号