首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Mycoscience》2019,60(4):246-249
Lentinula edodes secretes laccase (Lcc: EC 1.10.3.2), an industrially useful enzyme. In this study, we introduced and expressed the L. edodes Lcc gene, lcc1, driven by L. edodes glyceraldehyde-3-phosphate dehydrogenase gene promoter into L. edodes. The resulting transformants showed 2-fold Lcc activity than that of the host strain, and expression of the recombinant lcc1 was confirmed by RT-PCR.  相似文献   

2.
The control of promoter activity by oxygen availability appears to be an intriguing system for heterologous protein production. In fact, during cell growth in a bioreactor, an oxygen shortage is easily obtained simply by interrupting the air supply. The purpose of our work was to explore the possible use of hypoxic induction of the KlPDC1 promoter to direct heterologous gene expression in yeast. In the present study, an expression system based on the KlPDC1 promoter was developed and characterized. Several heterologous proteins, differing in size, origin, localization, and posttranslational modification, were successfully expressed in Kluyveromyces lactis under the control of the wild type or a modified promoter sequence, with a production ratio between 4 and more than 100. Yields were further optimized by a more accurate control of hypoxic physiological conditions. Production of as high as 180 mg/liter of human interleukin-1beta was obtained, representing the highest value obtained with yeasts in a lab-scale bioreactor to date. Moreover, the transferability of our system to related yeasts was assessed. The lacZ gene from Escherichia coli was cloned downstream of the KlPDC1 promoter in order to get beta-galactosidase activity in response to induction of the promoter. A centromeric vector harboring this expression cassette was introduced in Saccharomyces cerevisiae and in Zygosaccharomyces bailii, and effects of hypoxic induction were measured and compared to those already observed in K. lactis cells. Interestingly, we found that the induction still worked in Z. bailii; thus, this promotor constitutes a possible inducible system for this new nonconventional host.  相似文献   

3.
Laccase (Lcc) is a lignin-degrading enzyme produced by white-rot fungi and has been the subject of much interest in the field of bioremediation due to its ability to oxidize phenolic compounds. In this report, we describe the isolation and characterization of lcc1, a novel gene of Lentinula edodes that encodes Lcc1, and demonstrate that recombinant Lcc1 is expressed in an active, secreted form in tobacco BY-2 cells in culture. The open reading frame of lcc1 was 1,557 base pairs in length and encoded a putative protein of 518 amino acids. We introduced a chimeric form of lcc1 (CaMV35Sp:clcc1) into tobacco BY-2 cells and obtained several stable clcc1 transformants that expressed active Lcc1. Lcc1 activity in BY-2 culture media was higher than in cellular extracts, which indicated that recombinant Lcc1 was produced in a secreted form. Recombinant Lcc1 had a smaller apparent molecular weight and exhibited a different pattern of posttranslational modification than Lcc1 purified from L. edodes. The substrate specificity of purified recombinant Lcc1 was similar to L. edodes Lcc1, and both enzymes were able to decolorize the same set of dyes. These results suggest that heterologous expression of fungal Lcc1 in BY-2 cells will be a valuable tool for the production of sufficient quantities of active laccase for bioremediation.  相似文献   

4.
5.
The litter-degrading dung fungus Coprinopsis cinerea has the high number of seventeen different laccase genes. In this work, ten different monokaryons were compared in their ability to produce laccases in two different complete media at different temperatures. Few strains showed laccase activity at the optimal growth temperature of 37 °C. Nine of the strains gave laccase activities between 0.2 and 5.9 U mL?1 at the suboptimal temperature of 25 °C in mKjalke medium. Laccase activities in YMG/T medium were detected for only three strains (0.5–4.5 U mL?1). Zymograms of supernatants from mKjalke medium resulted in total in 10 different laccase bands but strains differed in distribution. LC–MS/MS analysis with Mascot searches of the annotated C. cinerea genome identified isoenzymes from five different genes (Lcc1, Lcc2, Lcc5, Lcc9 and Lcc10) and of Lcc1 three and of Lcc5 two distinct electrophoretical forms. Lcc1 and Lcc5 were expressed in all laccase positive strains, but not all forms were found in all of the strains. Lcc2, Lcc9 and Lcc10 occurred only in three strains as minor laccases, indicating that Lcc1 and Lcc5 are the main laccases of C. cinerea secreted in liquid mKjalke medium.  相似文献   

6.
A cDNA encoding a novel laccase from the white-rot fungus Trametes trogii was cloned and expressed in Pichia pastoris. The recombinant protein (Lcc2) exhibited kinetic parameters for both phenolic and non phenolic substrates that were different from the previously described Lcc1, the main laccase isoform expressed by T. trogii; in addition, the pH/activity profiles for phenolic substrates of Lcc2 were shifted upward by 1–1.5 pH units towards neutrality as compared to Lcc1. Comparative modeling of the two laccases (69.2% identity) showed that the overall fold of Lcc2 is very similar to Lcc1 and other laccases. The substrate cavity of Lcc2 contains the Asp residue which is thought to mediate the laccase activity at acidic pHs, whereas two hydrophobic residues (Phe, Ile) on the cavity orifice of Lcc2 replace the two polar residues (Thr, Ser) of Lcc1. These structural differences may be responsible for the unique kinetic performances of Lcc2.  相似文献   

7.
Aims:  To produce and purify a recombinant laccase from Pichia pastoris and to test its ability in decolourization of synthetic dyes.
Methods and Results:  A cDNA encoding for a laccase was isolated from Pycnoporus sanguineus and was expressed in P. pastoris strain SMD1168H under the control of the alcohol oxidase (AOX1) promoter. The laccase native signal peptide efficiently directed the secretion of the recombinant laccase in an active form. Factors influencing laccase expression, such as cultivation temperature, pH, copper concentration and methanol concentration, were investigated. The recombinant enzyme was purified to electrophoretic homogeneity, and was estimated to have a molecular mass of about 62·8 kDa. The purified enzyme showed a similar behaviour to the native laccase produced by P. sanguineus . Four different synthetic dyes including azo, anthraquinone, triphenylmethane and indigo dyes could be efficiently decolourized by the purified recombinant laccase without the addition of redox mediators.
Conclusions:  Heterologous production of P. sanguineus laccase in P. pastoris was successfully achieved. The purified recombinant laccase could efficiently decolourize synthetic dyes in the absence of mediators.
Significance and Impact of the Study:  This study is the first report on the synthetic dye decolourization by the recombinant P. sanguineus laccase. The decolourization capacity of this recombinant enzyme suggested that it could be a useful biocatalyst for the treatment of dye-containing effluents.  相似文献   

8.
A laccase from Coprinus cinereus is active at alkaline pH, an essential property for some potential applications. We cloned and sequenced three laccase genes (lcc1, lcc2, and lcc3) from the ink cap basidiomycete C. cinereus. The lcc1 gene contained 7 introns, while both lcc2 and lcc3 contained 13 introns. The predicted mature proteins (Lcc1 to Lcc3) are 58 to 80% identical at the amino acid level. The predicted Lcc1 contains a 23-amino-acid C-terminal extension rich in arginine and lysine, suggesting that C-terminal processing may occur during its biosynthesis. We expressed the Lcc1 protein in Aspergillus oryzae and purified it. The Lcc1 protein as expressed in A. oryzae has an apparent molecular mass of 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and absorption maxima at 278 and 614 nm. Based on the N-terminal protein sequence of the laccase, a 4-residue propeptide was processed during the maturation of the enzyme. The dioxygen specificity of the laccase showed an apparent K(m) of 21 +/- 2 microM and a catalytic constant of 200 +/- 10 min(-1) for O(2) with 2, 2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) as the reducing substrate at pH 5.5. Lcc1 from A. oryzae may be useful in industrial applications. This is the first report of a basidiomycete laccase whose biosynthesis involves both N-terminal and C-terminal processing.  相似文献   

9.
A high yield of lactic acid per gram of glucose consumed and the absence of additional metabolites in the fermentation broth are two important goals of lactic acid production by microrganisms. Both purposes have been previously approached by using a Kluyveromyces lactis yeast strain lacking the single pyruvate decarboxylase gene (KlPDC1) and transformed with the heterologous lactate dehydrogenase gene (LDH). The LDH gene was placed under the control the KlPDC1 promoter, which has allowed very high levels of lactate dehydrogenase (LDH) activity, due to the absence of autoregulation by KlPdc1p. The maximal yield obtained was 0.58 g g(-1), suggesting that a large fraction of the glucose consumed was not converted into pyruvate. In a different attempt to redirect pyruvate flux toward homolactic fermentation, we used K. lactis LDH transformant strains deleted of the pyruvate dehydrogenase (PDH) E1alpha subunit gene. A great process improvement was obtained by the use of producing strains lacking both PDH and pyruvate decarboxylase activities, which showed yield levels of as high as 0.85 g g(-1) (maximum theoretical yield, 1 g g(-1)), and with high LDH activity.  相似文献   

10.
11.
平菇漆酶基因在毕赤酵母中的分泌表达及酶学性质研究   总被引:5,自引:0,他引:5  
采用RTPCR技术克隆到一个平菇(Pleurotusostreatus)漆酶基因的全长cDNA,命名为lccPo1,其序列提交GenBank,登录号为AY450404。将其ORF克隆到毕赤酵母表达载体pHBM906,转化3株毕赤酵母GS115、KM71和SMD1168,该漆酶基因在3种毕赤酵母菌株中均实现了分泌表达。3种摇瓶培养条件①25℃,1.0%(VV)甲醇;②20℃,1.0%(VV)甲醇;③20℃,0.5%(VV)甲醇,进行比较研究后发现适当提高甲醇浓度有利于漆酶在低温条件下表达,而降低培养温度到20℃则可以提高漆酶的产量2~6倍。3株重组毕赤酵母在其最适反应条件下测得三者粗酶液最高漆酶酶活分别为3.19UmL[GS115(pHBM565)]、2.56UmL[KM71(pHBM565)]和2.49UmL[SMD1168(pHBM565)]。对重组酶进行相关的酶学性质分析表明,三者的最适反应pH值约为4.2,最适反应温度约为60℃。重组毕赤酵母GS115(pHBM565)所产酶的热稳定性稍好,在pH稳定性方面三者没有太大差异。  相似文献   

12.
A cDNA encoding for laccase was isolated from the ligninolytic fungus Trametes versicolor by RNA-PCR. The cDNA corresponds to the gene Lcc1, which encodes a laccase isoenzyme of 498 amino acid residues preceded by a 22-residue signal peptide. The Lcc1 cDNA was cloned into the vectors pMETA and pMETαA and expressed in Pichia methanolica. The laccase activity obtained with the Saccharomyces cerevisiae α-factor signal peptide was found to be twofold higher than that obtained with the native secretion signal peptide. The extracellular laccase activity in recombinants with the α-factor signal peptide was 9.79 U ml−1. The presence of 0.2 mM copper was necessary for optimal activity of laccase. The expression level was favoured by lower cultivation temperature. The identity of the recombinant protein was further confirmed by immunodetection using Western blot analysis. As expected, the molecular mass of the mature laccase was 64.0 kDa, similar to that of the native form.  相似文献   

13.
The laccases (EC 1.10.3.2) secreted into solid-state culture by Lentinula edodes were analyzed. The fungus secreted at least two laccases in the solid-state culture. One laccase was purified to a homogeneous preparation using anion-exchange, hydrophobic, and size-exclusion chromatography. SDS-PAGE analysis showed that the purified laccase, Lcc6, was a monomeric protein of 58.5 kDa. The optimum pH for enzyme activity was about 3.5, and the laccase was most active at 40°C. The N-terminal amino acid sequence of Lcc6 did not correspond to the sequence of Lcc1, which was previously purified from L. edodes. Lcc6 had decolorization activity to some chemical dyes.  相似文献   

14.
A laccase from Coprinus cinereus is active at alkaline pH, an essential property for some potential applications. We cloned and sequenced three laccase genes (lcc1, lcc2, and lcc3) from the ink cap basidiomycete C. cinereus. The lcc1 gene contained 7 introns, while both lcc2 and lcc3 contained 13 introns. The predicted mature proteins (Lcc1 to Lcc3) are 58 to 80% identical at the amino acid level. The predicted Lcc1 contains a 23-amino-acid C-terminal extension rich in arginine and lysine, suggesting that C-terminal processing may occur during its biosynthesis. We expressed the Lcc1 protein in Aspergillus oryzae and purified it. The Lcc1 protein as expressed in A. oryzae has an apparent molecular mass of 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and absorption maxima at 278 and 614 nm. Based on the N-terminal protein sequence of the laccase, a 4-residue propeptide was processed during the maturation of the enzyme. The dioxygen specificity of the laccase showed an apparent Km of 21 ± 2 μM and a catalytic constant of 200 ± 10 min−1 for O2 with 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) as the reducing substrate at pH 5.5. Lcc1 from A. oryzae may be useful in industrial applications. This is the first report of a basidiomycete laccase whose biosynthesis involves both N-terminal and C-terminal processing.  相似文献   

15.
Hiracin JM79 (HirJM79), a Sec-dependent bacteriocin produced by Enterococcus hirae DCH5, was cloned and produced in Lactococcus lactis, Lactobacillus sakei, Enterococcus faecium, Enterococcus faecalis, and Pichia pastoris. For heterologous production of HirJM79 in lactic acid bacteria (LAB), the HirJM79 structural gene (hirJM79), with or without the HirJM79 immunity gene (hiriJM79), was cloned into the plasmid pMG36c under the control of the constitutive promoter P(32) and into the plasmid pNZ8048 under the control of the inducible P(NisA) promoter. For the production of HirJM79 in P. pastoris, the gene encoding the mature HirJM79 protein was cloned into the pPICZalphaA expression vector. The recombinant plasmids permitted the production of biologically active HirJM79 in the supernatants of L. lactis IL1403, L. lactis NZ9000, L. sakei Lb790, E. faecalis JH2-2, and P. pastoris X-33, the coproduction of HirJM79 and nisin A in L. lactis DPC5598, and the coproduction of HirJM79 and enterocin P in E. faecium L50/14-2. All recombinant LAB produced larger quantities of HirJM79 than E. hirae DCH5, although the antimicrobial activities of most transformants were lower than that predicted from their production of HirJM79. The synthesis, processing, and secretion of HirJM79 proceed efficiently in recombinant LAB strains and P. pastoris.  相似文献   

16.
17.
18.
A laccase (EC 1.10.3.2) was isolated from the culture filtrate of Lentinula edodes. The enzyme was purified to a homogeneous preparation using hydrophobic, anion-exchange, and size-exclusion chromatographies. SDS-PAGE analysis showed the purified laccase, Lcc 1, to be a monomeric protein of 72.2 kDa. The enzyme had an isoelectric point of around pH 3.0. The optimum pH for enzyme activity was around 4.0, and it was most active at 40 degrees C and stable up to 35 degrees C. The enzyme contained 23.8% carbohydrate and some copper atoms. The enzyme oxidized 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, p-phenylendiamine, pyrogallol, guaiacol, 2,6-dimethoxyphenol, catechol, and ferulic acid, but not veratryl alcohol, tyrosine, and beta-(3,4-dihydroxyphenyl) alanine. The N-terminal amino acid sequence of Lcc 1 showed close homology to the N-terminal sequences determined for laccases from Phlebia radiata, Trametes villosa, and Trametes versicolor, but only low similarity was observed to a previously reported laccase from L. edodes. Lcc 1 was effective in the decolorization of chemically different dyes - Remazole Brilliant Blue R, Bromophenol Blue, methyl red, and Naphtol Blue Black - without any mediators, but the decolorization of two dyes - red poly(vinylamine)sulfonate-anthrapyridone dye and Reactive Orange 16 - did require some redox mediators.  相似文献   

19.
Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin (NAT)-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37 degrees C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37 degrees C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1, whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium-mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu+ transport into the secretory pathway is compromised, depriving laccase and other Cu(+)-dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their contributions to fungal physiology. Our findings demonstrate that both insertional mutagenesis methods can be applied to gene identification, but Agrobacterium-mediated transformation is more efficient and generates exclusively stable insertion mutations.  相似文献   

20.
Guo T  Kong J  Zhang L  Zhang C  Hu S 《PloS one》2012,7(4):e36296
Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H(2)O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H(2)O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15 ± 0.08 mM to 9.94 ± 0.07 mM, and the corresponding diacetyl production increased from 1.07 ± 0.03 mM to 4.16 ± 0.06 mM with the intracellular NADH/NAD(+) ratios varying from 0.711 ± 0.005 to 0.383 ± 0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD(+) ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H(2)O-forming NADH oxidase activity led to 76.95% lower H(2)O(2) concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H(2)O(2) accumulation and prolong cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号