首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthetic ribooligonucleotide, r(CCAGACUGm-AAGAUCUGG), corresponding to the unmodified yeast tRNA(Phe) anticodon arm is shown to bind to poly(U) programmed small ribosomal subunits of both E. coli and rabbit liver with affinity two order less than that of a natural anticodon arm. Its deoxyriboanalogs d(CCAGACTGAAGATCTGG) and d(CCAGA)r(CUGm-AAGA)d(TCTGG), are used to study the influence of sugar-phosphate modification on the interaction of tRNA with programmed small ribosomal subunits. The deoxyribooligonucleotide is shown to adopt a hairpin structure. Nevertheless, as well as oligonucleotide with deoxyriboses in stem region, it is not able to bind to 30S or 40S ribosomal subunits in the presence of ribo-(poly(U] or deoxyribo-(poly (dT) template. The deoxyribooligonucleotide also has no inhibitory effect on tRNA(Phe) binding to 30S ribosomes at 10-fold excess over tRNA. Neomycin does not influence binding of tRNA anticodon arm analogs used. Complete tRNA molecule and natural modifications of anticodon arm are considered to stabilize the arm structure needed for its interaction with a programmed ribosome.  相似文献   

2.
3.
Naturally occurring nucleoside modifications are an intrinsic feature of transfer RNA (tRNA), and have been implicated in the efficiency, as well as accuracy-of codon recognition. The structural and functional contributions of the modified nucleosides in the yeast tRNA(Phe) anticodon domain were examined. Modified nucleosides were site-selectively incorporated, individually and in combinations, into the heptadecamer anticodon stem and loop domain, (ASL(Phe)). The stem modification, 5-methylcytidine, improved RNA thermal stability, but had a deleterious effect on ribosomal binding. In contrast, the loop modification, 1-methylguanosine, enhanced ribosome binding, but dramatically decreased thermal stability. With multiple modifications present, the global ASL stability was mostly the result of the individual contributions to the stem plus that to the loop. The effect of modification on ribosomal binding was not predictable from thermodynamic contributions or location in the stem or loop. With 4/5 modifications in the ASL, ribosomal binding was comparable to that of the unmodified ASL. Therefore, modifications of the yeast tRNA(Phe) anticodon domain may have more to do with accuracy of codon reading than with affinity of this tRNA for the ribosomal P-site. In addition, we have used the approach of site-selective incorporation of specific nucleoside modifications to identify 2'O-methylation of guanosine at wobble position 34 (Gm34) as being responsible for the characteristically enhanced chemical reactivity of C1400 in Escherichia coli 16S rRNA upon ribosomal footprinting of yeast tRNA(Phe). Thus, effective ribosome binding of tRNA(Phe) is a combination of anticodon stem stability and the correct architecture and dynamics of the anticodon loop. Correct tRNA binding to the ribosomal P-site probably includes interaction of Gm34 with 16S rRNA C1400.  相似文献   

4.
Topography of the E site on the Escherichia coli ribosome.   总被引:6,自引:2,他引:4       下载免费PDF全文
Three photoreactive tRNA probes have been utilized in order to identify ribosomal components that are in contact with the aminoacyl acceptor end and the anticodon loop of tRNA bound to the E site of Escherichia coli ribosomes. Two of the probes were derivatives of E. coli tRNA(Phe) in which adenosines at positions 73 and 76 were replaced by 2-azidoadenosine. The third probe was derived from yeast tRNA(Phe) by substituting wyosine at position 37 with 2-azidoadenosine. Despite the modifications, all of the photoreactive tRNA species were able to bind to the E site of E. coli ribosomes programmed with poly(A) and, upon irradiation, formed covalent adducts with the ribosomal subunits. The tRNA(Phe) probes modified at or near the 3' terminus exclusively labeled protein L33 in the 50S subunit. The tRNA(Phe) derivative containing 2-azidoadenosine within the anticodon loop became cross-linked to protein S11 as well as to a segment of the 16S rRNA encompassing the 3'-terminal 30 nucleotides. We have located the two extremities of the E site-bound tRNA on the ribosomal subunits according to the positions of L33, S11 and the 3' end of 16S rRNA defined by immune electron microscopy. Our results demonstrate conclusively that the E site is topographically distinct from either the P site or the A site, and that it is located alongside the P site as expected for the tRNA exit site.  相似文献   

5.
The 15-nucleotide analog of yeast tRNA(Phe) anticodon arm binds cooperatively to two sites of poly(U) programmed 40S ribosome like intact tRNA(Phe). The cooperativity coefficients appeared to be about 4 for tRNA(Phe) and 50 for its anticodon arm. Anticodon arm contributes the majority of free energy of tRNA binding to a programmed 40S ribosomal subunit. The correct codon-anticodon pairing seems to play the key role in the cooperativity origin. Contrary to the anticodon arm template independent binding of the whole tRNA to the small ribosomal subunit is revealed.  相似文献   

6.
Cell-free protein synthesis, driven by a crude S30 extract from Escherichia coli, has been applied to the preparation of proteins containing unnatural amino acids at specific positions. We have developed methods for inactivating tRNA(Asp) and tRNA(Phe) within a crude E. coli tRNA by an antisense treatment and for digesting most of the tRNA within the S30 extract without essential damage to the ribosomal activity. In the present study, we applied these methods to the substitution of Asp and Phe residues of the HIV-1 protease with unnatural amino acids. With 10 mM Mg(2+), the translation efficiency was higher than that with the other tested concentration, and the misreading efficiency was low. The protease mRNA was translated in the presence of an antisense DNA-treated tRNA mixture and 2-naphthylalanyl- and/or p-phenylazophenylalanyl-tRNA. The results suggest that a good portion of the translation products are substituted at all of the seven positions originally occupied by Asp or Phe.  相似文献   

7.
Synthetic RNA stem loops corresponding to positions 28-42 in the anticodon region of tRNA(Phe) bind efficiently in an mRNA-dependent manner to ribosomes, whereas those made from DNA do not. In order to identify the positions where ribose is required, the anticodon stem-loop region of tRNA(Phe) (Escherichia coli) was synthesized chemically using a mixture of 2'-hydroxyl- and 2'-deoxynucleotide phosphoramidites. Oligonucleotides whose ribose composition allowed binding were retained selectively on nitrocellulose filters via binding to 30S ribosomal subunits. The binding-competent oligonucleotides were submitted to partial alkaline hydrolysis to identify the positions that were enriched for ribose. Quantification revealed a strong preference for a 2'-hydroxyl group at position U33. This was shown directly by the 50-fold lower binding affinity of a stem loop containing a single deoxyribose at position U33. Similarly, defective binding of the corresponding U33-2'-O-methyl-substituted stem-loop RNA suggests that absence of the 2'-hydroxyl group, rather than an altered sugar pucker, is responsible. Stem-loop oligoribonucleotides from different tRNAs with U33-deoxy substitutions showed similar, although quantitatively different effects, suggesting that intramolecular rather than tRNA-ribosome interactions are affected. Because the 2'-hydroxyl group of U33 was shown to be a major determinant of the U-turn of the anticodon loop in the crystal structure of tRNA(Phe) in yeast, our finding might indicate that the U-turn conformation in the anticodon loop is required and/or maintained when the tRNA is bound to the ribosomal P site.  相似文献   

8.
The 3'-terminal -A-C-C-A sequence of yeast tRNA(Phe) has been modified by replacing either adenosine-73 or adenosine-76 with the photoreactive analogue 8-azidoadenosine (8N3A). The incorporation of 8N3A into tRNA(Phe) was accomplished by ligation of 8-azidoadenosine 3',5'-bisphosphate to the 3' end of tRNA molecules which were shortened by either one or four nucleotides. Replacement of the 3'-terminal A76 with 8N3A completely blocked aminoacylation of the tRNA. In contrast, the replacement of A73 with 8N3A has virtually no effect on the aminoacylation of tRNA(Phe). Neither substitution hindered binding of the modified tRNAs to Escherichia coli ribosomes in the presence of poly(U). Photoreactive tRNA derivatives bound noncovalently to the ribosomal P site were cross-linked to the 50S subunit upon irradiation at 300 nm. Nonaminoacylated tRNA(Phe) containing 8N3A at either position 73 or position 76 cross-linked exclusively to protein L27. When N-acetylphenylalanyl-tRNA(Phe) containing 8N3A at position 73 was bound to the P site and irradiated, 23S rRNA was the main ribosomal component labeled, while smaller amounts of the tRNA were cross-linked to proteins L27 and L2. Differences in the labeling pattern of nonaminoacylated and aminoacylated tRNA(Phe) containing 8N3A in position 73 suggest that the aminoacyl moiety may play an important role in the proper positioning of the 3' end of tRNA in the ribosomal P site. More generally, the results demonstrate the utility of 8N3A-substituted tRNA probes for the specific labeling of ribosomal components at the peptidyltransferase center.  相似文献   

9.
The use of some bifunctional Pt(II)-containing cross-linking reagents for investigation of structural organization of ribosomal tRNA- and mRNA-binding centres is demonstrated for various types of [70S ribosome.mRNA-tRNA] complexes. It is shown that treatment of the complexes [70S ribosome.Ac[14C]Phe-tRNA(Phe).poly(U)], [70S ribosome.3'-32pCp-tRNA(Phe).poly(U)] and [70S ribosome.f[35S]Met-tRNA(fMet).AUGU6] with Pt(II)-derivatives results in covalent attachment of tRNA to ribosome. AcPhe-tRNA(Phe) and 3'-pCp-tRNA(Phe) bound at the P site were found to be cross-linked preferentially to 30S subunit. fMet-tRNA(fMet) within the 70S initiation complex is cross-linked to both ribosome subunits approximately in the same extent, which exceeds two-fold the level of the tRNA(Phe) cross-linking. All used tRNA species were cross-linked in the comparable degree both to rRNA and proteins of both subunits in all types of the complexes studied. 32pAUGU6 cross-links exclusively to 30S subunit (to 16S RNA only) within [70S ribosome.32pAUGU6.fMet-tRNA(fMet)] complex. In the absence of fMet-tRNAfMet the level of the cross-linking is 4-fold lower.  相似文献   

10.
gamma-Amides of GTP and affinity and photoaffinity derivatives of gamma-amides of GTP: gamma-anilide of GTP, gamma-(4-azido)anilide of GTP, gamma-[N-(4-azidobenzyl)-N-methyl]amide of GTP, gamma[4-N-(2-chloroethyl)-N-methylaminobenzyl]amide of GTP and gamma-[4-N-(2-oxoethyl)-N-methylaminobenzyl]amide of GTP substituted efficiently for GTP in the EF-Tu-dependent transfer of aminoacyl-tRNA to the ribosome but, in contrast to GTP, they were not hydrolyzed in this process. They represent a new class of non-hydrolyzable GTP analogs with preserved gamma-phosphodiester bond. The radioactive analog of GTP: gamma-[4-N-(2-chloroethyl)-N-methylamino[14C]benzyl]amide of GTP was used as an affinity labeling probe for the identification of components of the GTPase center formed in the EF-Tu-dependent transfer reaction of aminoacyl-tRNA to the ribosomal A-site. Within a six-component complex of poly(U)-programmed E. coli ribosomes with elongation factor Tu, Phe-tRNA(Phe) (at the A-site), tRNA(Phe) (at the P-site) and the [14C]GTP analog, mainly the ribosomal 23S RNA and to a lesser extent the ribosomal proteins L17, L21, S16, S21 and the ribosomal 16S RNA were labeled by the reagent. No significant modification of EF-Tu was detected.  相似文献   

11.
Footprinting mRNA-ribosome complexes with chemical probes.   总被引:11,自引:3,他引:8       下载免费PDF全文
We footprinted the interaction of model mRNAs with 30S ribosomal subunits in the presence or absence of tRNA(fMet) or tRNA(Phe) using chemical probes directed at the sugar-phosphate backbone or bases of the mRNAs. When bound to the 30S subunits in the presence of tRNA(fMet), the sugar-phosphate backbones of gene 32 mRNA and 022 mRNA are protected from hydroxyl radical attack within a region of about 54 nucleotides bounded by positions -35 (+/- 2) and +19, extending to position +22 when tRNA(Phe) is used. In 70S ribosomes, protection is extended in the 5' direction to about position -39 (+/- 2). In the absence of tRNA, the 30S subunit protects only nucleotides -35 (+/- 2) to +5. Introduction of a stable tetraloop hairpin between positions +10 and +11 of gene 32 mRNA does not interfere with tRNA(fMet)-dependent binding of the mRNA to 30S subunits, but results in loss of protection of the sugar-phosphate backbone of the mRNA downstream of position +5. Using base-specific probes, we find that the Shine-Dalgarno sequence (A-12, A-11, G-10 and G-9) and the initiation codon (A+1, U+2 and G+3) of gene 32 mRNA are strongly protected by 30S subunits in the presence of initiator tRNA. In the presence of tRNA(Phe), the same Shine-Dalgarno bases are protected, as are U+4, U+5 and U+6 of the phenylalanine codon. Interestingly, A-1, immediately preceding the initiation codon, is protected in the complex with 30S subunits and initiator tRNA, while U+2 and G+3 are protected in the complex with tRNA(Phe) in the absence of initiator tRNA. Additionally, specific bases upstream from the Shine-Dalgarno region (U-33, G-32 and U-22) as well as 3' to the initiation codon (G+11) are protected by 30S subunits in the presence of either tRNA. These results imply that the mRNA binding site of the 30S subunit covers about 54-57 nucleotides and are consistent with the possibility that the ribosome interacts with mRNA along its sugar-phosphate backbone.  相似文献   

12.
Nucleotide residues in E. coli tRNA(Phe) interacting directly with proteins in pre- and posttranslocated ribosomal complexes have been identified by UV-induced cross-linking. In the tRNA(Phe) molecule located in the Ab-site (pretranslocated complex) residues A9, G18, A26 and U59 are cross-linked with proteins S10, L27, S7 and L2, respectively. In tRNA(Phe) located in the Pt-site (posttranslocated complex) residues C17, G44, C56 and U60 are cross-linked with proteins L2, L5, L27 and S9, respectively. The same cross-links (except for G44-L5) have been found for tRNA in the Pb-site of the pretranslocated ribosomal complex. None of the tRNA(Phe) residues cross-linked with proteins in the complexes examined by us are involved in the stabilization of the secondary structure, but residues A9, G18, A26, G44 and C56 participate in stabilization of tRNA tertiary structure. Since translocation of tRNA(Phe) from Ab- to P-site is accompanied by changes of tRNA contacts with proteins L2 and L27, we postulate that this translocation is coupled with tRNA turn around the axis joining the anticodon loop with the CCA-end of the molecule. This is in agreement with the idea about the presence of a kink in mRNA between codons located in the ribosomal A- and P-sites. In all E. coli tRNAs with known primary structure positions 18 and 56, interacting with L27 protein, when tRNA is located either in A- or P-site, are invariant, whereas positions 17 and 60, interacting with proteins only when tRNA is in the P-site, are strongly conserved. In positions 9, 26 and 59 purines are the preferred residues. In most E. coli tRNAs deviations from the consensus in these three positions is strongly correlated.  相似文献   

13.
30S subunits were isolated capable to bind simultaneously two molecules of Phe-tRNAPhe (or N-Acetyl-Phe-tRNAPhe), both poly(U) dependent. The site with higher affinity to tRNA was identified as P site. tRNA binding to this site was not inhibited by low concentrations of tetracycline (2 x 10(-5)M) and, on the other hand, N-Acetyl-Phe-tRNAPhe, initially prebound to the 30S.poly(U) complex in the presence of tetracycline, reacted with puromycin quantitatively after addition of 50S subunits. The site with lower affinity to tRNA revealed features of the A site: tetracycline fully inhibited the binding of both Phe-tRNAPhe and N-Acetyl-Phe-tRNAPhe. Binding of two molecules of Phe-tRNAPhe to the 30S.poly(U) complex followed by the addition of 50S subunits resulted in the formation of (Phe)2-tRNAPhe in 75-90% of the reassociated 70S ribosomes. These results prove that isolated 30S subunits contain two physically distinct centers for the binding of specific aminoacyl- (or peptidyl-) tRNA. Addition of 50S subunits results in the formation of whole 70S ribosomes with usual donor and acceptor sites.  相似文献   

14.
Heptauridylate bearing a radioactive alkylating [14C]-4-(N-2-chloroethyl-N-methylamino)benzylamine attached to the 5-phosphate via amide bond, was bound to ribosomes and small ribosomal subunits from rat liver which thereby were coded to bind N-acylated Phe tRNA. After completion of the alkylating reaction and subsequent hydrolysis of the phosphamide bond ribosomal proteins were isolated. Radioactivity was found covalently associated preferentially with protein S26 and, to a very small extent, with proteins S3 and S3a. The affinity labelling reaction could be abolished by (pU)14 and poly(U). From the results it is concluded that ribosomal protein S26 is located at the mRNA binding site of rat liver ribosomes.  相似文献   

15.
The interaction of tRNA with 80 S ribosomes from rabbit liver was studied using biochemical as well as fluorescence techniques. Besides the canonical A and P sites, two additional sites were found which specifically bind deacylated tRNA. One of the sites is analogous to the E site of prokaryotic ribosomes, in that binding of tRNA is labile, does not depend on codon-anticodon interaction, does not protect the anticodon loop from solvent access, and requires the presence of the 3'-terminal adenosine of the tRNA. In contrast, the stability of the tRNA complex with the second site (S site) is high. tRNA binding to the S site is also codon-independent; nevertheless, the anticodon loop is shielded from solvent access. Removal of the 3'-terminal adenosine decreases the affinity of tRNA(Phe) for the S site approximately 50-fold. tRNA(Phe) is retained at the S site during translocation and through poly(Phe) synthesis. Thus, the S site does not seem to be an intermediate site for the tRNA during the elongation cycle. Rather, the tRNA bound to the S site may allosterically modulate the function of the ribosome.  相似文献   

16.
Human placenta and Escherichia coli Phe-tRNA(Phe) and N-AcPhe-tRNA(Phe) binding to human placenta 80S ribosomes was studied at 13 mM Mg2+ and 20 degrees C in the presence of poly(U), (pU)6 or without a template. Binding properties of both tRNA species were studied. Poly(U)-programmed 80S ribosomes were able to bind charged tRNA at A and P sites simultaneously under saturating conditions resulting in effective dipeptide formation in the case of Phe-tRNA(Phe). Affinities of both forms of tRNA(Phe) to the P site were similar (about 1 x 10(7) M-1) and exceeded those to the A site. Affinity of the deacylated tRNA(Phe) to the P site was much higher (association constant > 10(10) M-1). Binding at the E site (introduced into the 80S ribosome by its 60S subunit) was specific for deacylated tRNA(Phe). The association constant of this tRNA to the E site when A and P sites were preoccupied with N-AcPhe-tRNA(Phe) was estimated as (1.7 +/- 0.1) x 10(6) M-1. In the presence of (pU)6, charged tRNA(Phe) bound loosely at the A and P sites, and the transpeptidation level exceeded the binding level due to the exchange with free tRNA from solution. Affinities of aminoacyl-tRNA to the A and P sites in the presence of (pU)6 seem to be the same and much lower than those in the case of poly(U). Without a messenger, binding of the charged tRNA(Phe) to 80S ribosomes was undetectable, although an effective transpeptidation was observed suggesting a very labile binding of the tRNA simultaneously at the A and P sites.  相似文献   

17.
The effects of P/P- and P/E-site tRNA(Phe) binding on the 16S rRNA structure in the Escherichia coli 70S ribosome were investigated using UV cross-linking. The identity and frequency of 16S rRNA intramolecular cross-links were determined in the presence of deacyl-tRNA(Phe) or N-acetyl-Phe-tRNA(Phe) using poly(U) or an mRNA analogue containing a single Phe codon. For N-acetyl-Phe-tRNA(Phe) with either poly(U) or the mRNA analogue, the frequency of an intramolecular cross-link C967 x C1400 in the 16S rRNA was decreased in proportion to the binding stoichiometry of the tRNA. A proportional effect was true also for deacyl-tRNA(Phe) with poly(U), but the decrease in the C967 x C1400 frequency was less than the tRNA binding stoichiometry with the mRNA analogue. The inhibition of the C967 x C1400 cross-link was similar in buffers with, or without, polyamines. The exclusive participation of C967 with C1400 in the cross-link was confirmed by RNA sequencing. One intermolecular cross-link, 16S rRNA (C1400) to tRNA(Phe)(U33), was made with either poly(U) or the mRNA analogue. These results indicate a limited structural change in the small subunit around C967 and C1400 during tRNA P-site binding sensitive to the type of mRNA that is used. The absence of the C967 x C1400 cross-link in 70S ribosome complexes with tRNA is consistent with the 30S and 70S crystal structures, which contain tRNA or tRNA analogues; the occurrence of the cross-link indicates an alternative arrangement in this region in empty ribosomes.  相似文献   

18.
Three new photoreactive tRNA derivatives have been synthesized for use as probes of the peptidyl transferase center of the ribosome. In two of these derivatives, the 3' adenosine of yeast tRNA(Phe) has been replaced by either 2-azidodeoxyadenosine or 2-azido-2'-O-methyl adenosine, while in a third the 3'-terminal 2-azidodeoxyadenosine of the tRNA is joined to puromycin via a phosphoramidate linkage to generate a photoreactive transition-state analog. All three derivatives bind to the P site of 70S ribosomes with affinities similar to that of unmodified tRNA(Phe) and can be cross-linked to components of the 50S ribosomal subunit by irradiation with near-UV light. Characteristic differences in the cross-linking patterns suggest that these tRNA derivatives can be used to follow subtle changes in the position of the tRNA relative to the components of the peptidyl transferase center.  相似文献   

19.
Phe-tRNA of Escherichia coli, specifically derivatized at the S4U8 position with the 9 A long p-azidophenacyl photoaffinity probe, was crosslinked exclusively to protein S19 of the 30 S ribosomal subunit when the transfer RNA occupied the ribosomal A site (Lin et al., 1983). Two antigenic sites for S19 are known, on opposite sides of the head of the subunit. In this work, discrimination between these two sites was accomplished by affinity immunoelectron microscopy. A dinitrophenyl group was placed on the acp3U47 residue of the same tRNA molecules bearing the photoprobe on S4U8. Addition of this group affected neither aminoacylation, A site binding, nor crosslinking. It also made possible specific affinity purification of crosslinked tRNA-30 S complexes from unreactive 30 S. Reaction of the 2,4-dinitrophenyl-labeled tRNA-30 S complex with antibody was followed by immunoelectron microscopy to reveal the sites of attachment. All of the bound antibody was associated with the ribosome region corresponding to only one of the two known antigenic sites for S19, namely the one closer to the large side projection of the 30 S subunit. A site within this region must be within 10 A of the S4U8 residue of tRNA when it is bound in the ribosomal A site.  相似文献   

20.
Ogle JM  Murphy FV  Tarry MJ  Ramakrishnan V 《Cell》2002,111(5):721-732
A structural and mechanistic explanation for the selection of tRNAs by the ribosome has been elusive. Here, we report crystal structures of the 30S ribosomal subunit with codon and near-cognate tRNA anticodon stem loops bound at the decoding center and compare affinities of equivalent complexes in solution. In ribosomal interactions with near-cognate tRNA, deviation from Watson-Crick geometry results in uncompensated desolvation of hydrogen-bonding partners at the codon-anticodon minor groove. As a result, the transition to a closed form of the 30S induced by cognate tRNA is unfavorable for near-cognate tRNA unless paromomycin induces part of the rearrangement. We conclude that stabilization of a closed 30S conformation is required for tRNA selection, and thereby structurally rationalize much previous data on translational fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号