首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The regulation in tobacco of the rolB and rolC promoters of Agrobacterium rhizogenes pRi 1855 TL-DNA was studied by using the -glucuronidase (GUS) reporter system in transgenic plants. A 20- to 100-fold increase of GUS activity was selectively induced by auxin in rolB-GUS transformed mesophyll protoplasts, whereas this auxin-dependent increase was only 5-fold in rolC-GUS protoplasts. Moreover, both gene fusions exhibited similar tissue-specific expression in aerial parts but different patterns in roots. The spatial pattern of rolBGUS expression could be strongly modified by the addition of exogenous auxin, further suggesting that auxin plays a central role in the regulation of the rolB promoter in tobacco. The tissue-specific and auxin-dependent regulation of the rolB promoter is discussed in relation to the effects of the rolB gene on rhizogenesis and on cellular responses to auxin.Abbreviations BA benzoic acid - 6-BAP benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - 2,4,5-T 2,4,5,-trichlorophenoxyacetic acid - 2,4,6-T 2,4,6-trichlorophenoxyacetic acid - IAA indoleacetic acid - NAA naphthaleneacetic acid - MU 4-methyl umbelliferone - 35S CaMV cauliflower mosaic virus 35S (promoter) - TCA trichloroacetic acid - X-Glu 5-bromo-4chloro-3-indolyl -d-glucuronic acid  相似文献   

2.
Summary To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter in a monocotyledonous plant, rice (Oryza sativa L.), a transgenic plant and its progeny expressing the CaMV35S-GUS gene were examined by histochemical and fluorometric assays. The histochemical study showed that -glucuronidase (GUS) activity was primarily localized at or around the vascular tissue in leaf, root and flower organs. The activity was also detected in the embryo and endosperm of dormant and germinating seeds. The fluorometric assay of various organs showed that GUS activity in transgenic rice plants was comparable to the reported GUS activity in transgenic tobacco plants expressing the CaMV35S-GUS gene. The results indicate that the level of expression of the CaMV 35S promoter in rice is similar to that in tobacco, a dicotyledonous plant, suggesting that it is useful for expression of a variety of foreign genes in rice plants.  相似文献   

3.
The expression of a stress- and salicylic acidinducible protein gene from tobacco, PR1a protein gene, was determined after its Introduction to lettuce (Lactuca sativa L.) plants. The 5 flanking 2.4 Kb fragment from PR1a gene was joined to the bacterial -glucuronidase (GUS) gene (PR-GUS) and introduced into lettuce cotyledons by Agrobacterium-mediated gene transfer using a binary vector containing a kanamycin-resistance gene as a selectable marker. As a control with constitutive expression, the chimeric gene consisting of CaMV 35S RNA promoter and GUS gene (35S-GUS) was used. An improved method for shoot formation directly from lettuce cotyledons was used effectively for transformation, shortening the time for regeneration. In 70% or more of kanamycin-resistant regenerated lettuce plants, into which PR-GUS or 35S-GUS was introduced, high GUS activity and integration of the chimeric gene into the lettuce genome were detected. By treatment with salicylic acid, GUS activity increased 3- to 50-fold in PR-GUS transformants, however, no increase was detected in 35S-GUS plants. These results showed that the promoter of the stress-inducible tobacco PR1a protein gene was introduced into lettuce plants, and the introduced chimeric gene was expressed normally under the regulated control of the PRla promoter.Abbreviations BA N6-benzyladenine - GUS -glucuronidase - NAA -naphthaleneacetic acid - Km kanamycin - Kms kanamycin resistant - Km0 kanamycin sensitive - NPT- II neomycin phosphotransferase II - PR pathogenesis-related - SA salicylic acid - MS Murashige and Skoog medium - NOS nopaline synthase  相似文献   

4.
5.
The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 μM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42°C heat treatment, and the expressed GUS specific activity was 7–26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.  相似文献   

6.
The 5 flanking region of a salt-stress-inducible, CAM-specific phosphoenolpyruvate carboxylase (PEPC) gene from the facultative halophyte Mesembryanthemum crystallinum, was fused to the -glucuronidase (GUS) reporter gene and introduced into Nicotiana tabacum SR1. The Ppc1 promoter displayed high levels of expression in transgenic tobacco quantitatively and qualitatively similar to a full-length 35S CaMV-GUS construct. Histochemical assays revealed that the full-length Ppc1-GUS fusions expressed GUS activity in all tissues except in root tips. While tobacco is capable of utilizing the Ppc1 cis-acting regulatory regions from M. crystallinum to yield high levels of constitutive expression, this glycophyte fails to direct a stress-inducible pattern of gene expression typical of this promoter in its native, facultative halophytic host.  相似文献   

7.
8.
9.
Seedling hypocotyls of Lithospermum erythrorhizon were infected with Agrobacterium rhizogenes (strain 15834) harboring a binary vector with an intron-bearing the β-glucuronidase (GUS) gene driven by cauliflower mosaic virus (CaMV) 35S promoter as well as the hygromycin phosphotransferase (HPT) gene as the selection marker. About 20% of the hairy roots isolated were hygromycin resistant and had co-integrated GUS and HPT genes in their Lithospermum genomic DNA. Because GUS activity was detected in almost all the hygromycin-resistant root tissues, the CaMV 35S promoter seems to be ubiquitously active in L. erythrorhizon hairy roots. In pigment production medium M9, the hairy root cultures had shikonin productivity similar to that of cell suspension cultures of Lithospermum. They also showed light-dependent inhibition of shikonin biosynthesis similar to that of Lithospermum cell cultures. These findings suggest that this hairy root system transformable with A. rhizogenes is a suitable model system for molecular characterization of shikonin biosynthesis via reverse genetics. Received: 2 March 1998 / Revision received: 25 May 1998 / Accepted: 8 July 1998  相似文献   

10.
 Eleven independent GUS-positive hairy roots were induced by co-cultivation of leaf explants of Antirrhinum majus L. with Agrobacterium tumefaciens strain GV2260 containing the rol type MAT vector pNPI702. The MAT vector pNPI702 possesses a GUS gene under the 35 S promoter and a removal element in which the 7.6-kb DNA fragments containing the rolA, B, C and D genes and recombinase gene with a 35 S promoter are located between two directly oriented recombination site sequences. A total of 326 adventitious shoots regenerated from 11 independent hairy root lines cultured on 1/2MS medium without plant growth regulators at 25  °C under a 16/8 h (day/night) photoperiod after 8 weeks of stock-culture of hairy roots and 4 weeks of culture of the green segments of hairy roots. Regenerated plants showed either a normal or dwarf morphology. GUS activity was observed in the hairy roots and regenerated shoots. The presence of the GUS gene in the regenerated, morphologically normal plants was confirmed by PCR analysis. Received: 28 February 2000 / Revision received: 18 August 2000 / Accepted: 22 August 2000  相似文献   

11.
Twelve independent lines were transformed by particle bombardment of soybean embryogenic suspension cultures with the tobacco anthranilate synthase (ASA2) promoter driving the uidA (beta-glucuronidase, GUS) reporter gene. ASA2 appears to be expressed in a tissue culture specific manner in tobacco (Song H-S, Brotherton JE, Gonzales RA, Widholm JM. Tissue culture specific expression of a naturally occurring tobacco feedback-insensitive anthranilate synthase. Plant Physiol 1998;117:533-43). The transgenic lines also contained the hygromycin phosphotransferase (hpt) gene and were selected using hygromycin. All the selected cultures or the embryos that were induced from these cultures expressed GUS measured histochemically. However, no histochemical GUS expression could be found in leaves, stems, roots, pods and root nodules of the plants formed from the embryos and their progeny. Pollen from some of the plants and immature and mature seeds and embryogenic cultures initiated from immature cotyledons did show GUS activity. Quantitative 4-methylumbelliferyl-glucuronide (MUG) assays of the GUS activity in various tissues showed that all with observable histochemical GUS activity contained easily measurable activities and leaves and stems that showed no observable histochemical GUS staining did contain very low but measurable MUG activity above that of the untransformed control but orders of magnitude lower than the constitutive 35S-uidA controls used. Low but clearly above background levels of boiling sensitive GUS activity could be observed in the untransformed control immature seeds and embryogenic cultures using the MUG assay. Thus in soybean the ASA2 promoter drives readily observable GUS expression in tissue cultures, pollen and seeds, with only extremely low levels seen in vegetative tissues of the plants. The ASA2 driven expression seen in mature seed was, however, much lower than that seen with the constitutive 35S promoter; less than 2% in seed coats and less than 0.13% in cotyledons and embryo axes. The predominate tissue culture specific expression pattern of the ASA2 promoter may be useful for genetic transformation of crops.  相似文献   

12.
The Arabidopsis thaliana (L.) Heynh. SUC2 gene encodes a plasma-membrane sucrose-H+ symporter. The DNA sequence of the SUC2 promoter has been determined. Using a translational fusion of this promoter to the N-terminus of -glucuronidase (GUS) and the GUS histochemical assay, the tissue specificity of the SUC2 promoter was studied in Arabidopsis plants transformed with this fusion construct. The SUC2 promoter directed expression of GUS activity with high specificity to the phloem of all green tissues of Arabidopsis such as rosette leaves, stems, and sepals. During leaf development the expression of SUC2-GUS activity was first seen in the tips of young rosette leaves. In older leaves and during their concomitant sink/source transition, expression proceeded from the tips to the bases of the leaves, indicating that expression of the SUC2 sucrose-H+ symporter is tightly coupled to the source-strength of Arabidopsis leaves. Expression of SUC2-GUS activity was also seen, however, in sink tissues such as roots and developing Arabidopsis pods, suggesting that the product of the SUC2 gene might not only be important for phloem loading, but also for phloem unloading. A possible regulatory effect of carbohydrates (glucose and sucrose) on the activity of the SUC2 promoter was studied and excluded, both in excised leaves and young seedlings of transgenic Arabidopsis plants. The overall pattern of SUC2-GUS expression correlated well with that of the Arabidopsis thaliana AHA3 plasma-membrane H+ -ATPase which is also expressed in the phloem and most likely represents the primary pump generating the energy for secondary active transporters such as SUC2.Abbreviations GUS -glucuronidase - MS Murashige & Skocgmedium - X-Gluc 5-bromo-4-chloro-3-indolyl--d-glucuronic acid Accession number for SUC2-promoter sequences: The DNA sequence data reported in this paper will appear in the EMBL, GenBank, and DDBJ nucleotide sequence databases under the accession number X79702 (AtSUC2 promoter sequence)We want to thank Günther Peissig for growing the Arabidopsis thaliana plants. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 43/C5) and a grant to N.S. from the Bundesministerium für Forschung und Technologie.  相似文献   

13.
14.
The Biolistic® microprojectile DNA-delivery method was used to test the usefulness in conifers of eight gene constructs based on the 35S promoter, the AMV translational enhancer, and gene fusion between the P-glucuronidase and the neomycin phosphotransferase II genes. The evaluation was done with embryogenic cells of Picea glauca, where the relative strengths of the promoters were 35S-35S-AMVE>35S-AMVE>35S-35S>35S as evaluated by transient gene expression. The fusion gene of GUS and NPT II gave lower levels of transient gene expression than the unfused GUS gene as detected by X-GLU histochemical assays. Experiments comparing the EM promoter of wheat and the 35S-35S-AMVE promoter (with and without fusion between GUS and NPT II) were done in Picea rubens, P. mariana, P. glauca, and Larix x eurolepis. The unfused gene with the 35S-35S-AMVE promoter gave higher levels of transient gene expression than the fused GUS-NPT II gene. The fluorescent MUG assay was more sensitive than the histochemical X-GLU assay to detect the activity of the -glucuronidase gene.Abbreviations AMV alfalfa mosaic virus - AMVE alfalfa mosaic virus translational enhancer - EM protein of mature wheat embryo - GUS P-glucuronidase gene - MUG 4-methylumbelliferyl -D-glucuronide - NPT II neomycin phosphotransferase - X-GLU 5-bromo-4-chloro-3-indolyl -D-glucuronic acid  相似文献   

15.
The proximal parts of the promoters of the genes for symbiotic-type hemoglobins are generally conserved, but the promoter of the lbI gene of lupine (LulbI) shows some unusual structural features. It lacks typical organ-specific elements characteristic of all the leghemoglobin gene promoters described thus far. We have analysed its functional activity in transgenic Lotus corniculatus. A fusion construct between the lbI promoter and the GUS reporter gene was expressed mainly in the central zone of the root nodule, but the product was also detected in the non-nodule root zone and in roots in tissue culture. In roots of transgenic tobacco, the activity of the promoter was only 24% lower than in Lotus nodules. LulbI promoter activity was also detected in tobacco leaves. Lupine hemoglobin I has a higher sequence identity to symbiotic-type hemoglobins and thus it groups within the “Class II” hemoglobins. Received: 28 June 1999 / Accepted: 25 November 1999  相似文献   

16.
The promoter region of a Nicotiana tabacum extensin gene (Ext 1.4) was studied in tobacco transgenic plants carrying Ext 1.4/GUS (-glucuronidase) chimeric genes. The pattern of expression could be defined and cis-regulatory elements were localized in small regions of the promoter. In healthy plants, expression was essentially found in cells under mechanical stress, that is at the emergence of lateral roots, at the junction between stem and petiole and at the fusion of carpels. In roots of germinating plantlets, expression was found in the piliferous zone. In flowers, expression was found on the one hand in the placenta, in the locular tissue of ovaries and in the zone of carpel fusion, and on the other hand in the connective tissue of anthers, in mature and in germinating pollen. A developmental regulation during seed germination, where the gene fusion is transiently expressed in the endosperm and in the root tip before its expression becomes similar to that found in mature plants has also been shown. The expression of the Ext 1.4/GUS chimeric gene was also induced during cell proliferation under hormone control, for example in response to Agrobacterium tumefaciens infection and in calli. However, when organogenesis occurred under hormone control, expression was never found in root or shoot primordia. Cis-regulatory elements important for expression of the Ext 1.4 GUS gene fusion in germinating seeds, in mature plants or in proliferating cells have been localized in the proximal promoter region whereas enhancer elements have been located further upstream.  相似文献   

17.
SbPRP1 is a member of the soybean (Glycine max L. Merr) proline-rich cell wall protein family and is expressed at high levels in root tissue. To characterize the sequences required for this expression, we have fused 1.1 kb of upstream flanking DNA sequence from an SbPRP1 genomic clone to a gene encoding -glucuronidase (GUS). This construct was introduced into tobacco using Agrobacterium tumefaciens-mediated transformation. Histochemical staining of GUS activity in transgenic tobacco indicated that SbPRP1 is expressed in the apical and elongating region of both primary and lateral roots, most strongly in the epidermis. A similar localization pattern was found in transformed hairy roots when this construct was introduced into cowpea (Vigna aconitifolia) using Agrobacterium rhizogenes-mediated transformation. Nested 5-deletion analysis of the SbPRP1 promoter indicated that a minimal promoter for SbPRP1 expression in roots is located within the first 262 bases of upstream flanking DNA and that the region between –1080 and –262 is required for maximal expression of this gene. Gel retardation assays showed that nuclear factors can be detected in soybean roots which specifically bind to sequences located between –1080 and –623, a region which is needed for maximal expression of the SbPRP1 promoter. Northern hybridization analysis was also used to show that little SbPRP1 mRNA was present in roots during the first 24 h after imbibition. These studies indicate that SbPRP1 expression is localized to the actively growing region of the root and that this expression is temporally regulated during very early stages of seedling growth.  相似文献   

18.
19.
A chimeric gene consisting of the -glucuronidase (gusA) reporter gene under the control of the metallothionein-like promoter cgMT1 from the tropical tree Casuarina glauca was introduced into Nicotiana tabacum via Agrobacterium tumefaciens and into Oryza sativa by particle bombardment. The strongest histochemical staining for GUS activity was observed in the root system of the transgenic plants, and especially in lateral roots. In contrast, a relatively low level of reporter gene expression was seen in the aerial tissues and GUS staining was located mainly in the plant vascular system. The average ratio of GUS activity between root and leaf was found to be 13:1 in tobacco and 1.5:1 in rice. The pattern of cgMT1 promoter activity in floral organs was found to be different in tobacco and rice. High levels of gusA gene expression were detected in the ovules, pollen grains and tapetum, whereas in rice PcgMT1 directs expression to the vascular system of the floral organs. These results suggest that PcgMT1 is potentially useful in molecular breeding to express genes of interest whose products are preferentially needed in roots.  相似文献   

20.
A genomic clone encoding the potato homolog of the yeast ubiquitin-ribosomal protein fusion gene ubi3 was isolated and characterized. Chimeric genes containing the ubi3 promoter (920 bp of 5 to the ubiquitin start codon) were constructed in which the reporter gene -glucuronidase (GUS) was either fused directly to the promoter, or introduced as a translational fusion to the ubiquitin-coding region. After introduction into the potato by Agrobacterium-mediated transformation, GUS activities were measured in leaves and in tubers of transgenic clones. GUS activity was 5- to 10-fold higher in clones expressing the ubiquitin-GUS translational fusion than in clones containing GUS fused directly to the ubi3 promoter. For both types of constructs, GUS activity was highest in meristematic leaves and declined during leaf expansion, then rose again to near the meristematic levels during senescence. GUS activity in tubers was similar to that in young leaves. In contrast to the native ubi3 genes, the chimeric ubi3-GUS transgenes were not activated in the tuber by wounding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号