首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The responses of cortical cells to gratings and bars were compared. The excitatory and inhibitory on-and off-zones of a simple cell are composed of on- and off-subfields of CGL. Any zone is formed by an opponent pair of subfields one of which gives an excitatory effect, the other — inhibitory. Such organization assumes the linear properties of a simple field. The deviations from linearity are due to spatial dis-placements of the subfields, heterogeneity of subfields, or the absence of one subfield in the opponent pair. Subfields may be both phasic and tonic, even in the same RF. Analysis of the most common type of a complex cell with modulated responses against unmodulated background shows that a mask eliminating stimulation of any half of the RF causes (according to the theory of filtres) increasing the bandwidth due to the increase or the appearance of responses to side low and high frequencies. The modulated components of the responses from both halves of the RF are out of phase. Analysis of this fact and the responses to thin bars suggests that a complex field is formed by linear and nonlinear subsystems converging onto output neuron. Other types of complex fields are organized by different combinations of subsystems. Limited in area by masking the RF responds to much higher spatial frequencies than the whole RF. The optimal frequency in two-dimensional spatial frequency characteristics of the RF does not change with orientation. Simple RFs and a part of complex RF calculate the amplitude and the phase of the stimulus, the other part of complex RFs (with unmodulated response) calculate only amplitude. Given all this, the RFs are grating filters of spatial frequency.  相似文献   

2.
The purpose of this study was to explore the effects of spatial and temporal properties on the expected responses of visual neurons that have linear receptive fields (RFs), particularly those having a mirror symmetric distribution of spatial subregions. Receptive fields that are symmetric in at least one spatial dimension occur in neurons of the retina, the lateral geniculate nucleus (LGN), and the visual cortex of mammals. Responses to flashing bars, moving bars, and moving edges were studied for different configurations of an analog RF model in which spatial and temporal aspects were varied independently. Responses of the model at intermediate stimulus speeds were found to agree with responses in the literature for X and Y units of the LGN and often for simple units of the visual cortex. In particular, having separated regions of response to light and dark edges, an identifying property of simple cells, was found to be a linear consequence of RF regions responding inversely to stimuli of opposite polarity. Model differences from responses of cortical complex units show that a linear model cannot mimic their responses, and imply that complex units employ major nonlinearities in coding image polarity (light vs dark), which signifies a nonlinearity in coding intensity. Because sudden flux changes inherent in flashing bars test mainly temporal RF properties, and slowly moving edges test mainly spatial properties, these two tests form a useful minimal set with which to describe and classify RFs. The usefulness of this set derives both from its sensitivity to spatial and temporal variables, and from the correlation between the linearity of a cell's processing of stimulus intensity and its RF classification.  相似文献   

3.
Time amplitude -- frequency characteristics of the I and II types of receptive fields (RF) of lateral geniculate and their dependence on the contrast and spatial parameters of the light stimulus were studied. It is shown that the frequency characteristics of the RF I type depends on the contrast and area of the light stimulus, the higher being the contrast at a small area the smaller are the low frequencies. However at a large area of the stimulus the inhibition of low frequencies is greater at a small contrast. The transmitting band of frequency characteristics of RF II type does not depend on the contrast at a small area of the stimulus, at a large area a fall of low frequencies takes place at high contrasts of the stimulus. Such different behaviour of the receptive fields is explained by the models, which take into account RF spatial characteristics.  相似文献   

4.
Two prominent frequency components designated f1 and f2 have been identified in the visual evoked response to the transient presentation of sinusoidal luminance gratings in the range of 0.5–8 c/deg. The components occur at temporal frequencies below the alpha band, with the f1 frequency roughly half that of the f2 frequency. The f1 component is largest at low spatial frequencies with f2 becoming progressively dominant as spatial frequency is increased.The frequency and amplitude of f1 and f2 change substantially over the time course of the response. This has been studied by calculating the temporal frequency spectrum of the transient evoked potential over successive short-time epochs running through the response. Using this technique, the response is shown to consist of narrow- and frequency peaks or ‘formants’ emerging at different times after stimulus onset. These formants occur at frequencies other than those of the spontaneous EEG and undergo changes in frequency and amplitude over the time course of the response.Two spectrum analysis techniques were employed: the Discrete Fourier Transform and Linear Predictive Coding. Frequency components were successfully identified in single-trial responses using the LPC technique.  相似文献   

5.
We examined responses of neurons of the field 21b of the cat brain cortex to presentation of moving visual stimuli of different forms. Characteristics of the responses of about 54% of the studied neurons showed that in these cases configurations of the contours of moving stimuli were to a certain extent discriminated. Most neurons selectively reacting to changes in the form of the stimulus were dark-sensitive units (they generated optimum responses to presentation of dark visual stimuli on the light background). Detailed examination of the spatial infrastructure of receptive fields (RFs) of the neurons and comparison of this structure with the selectivity of neuronal responses showed that there is no significant correlation between static organization of the RF and responses of the neuron to the movements of stimuli of different forms. We hypothesize that the dynamic infrastructure of the RF and the combined activity of functional groups of neurons, whose RFs spatially overlap the RF of the neuron under study, play a definite role in the mechanisms responsible for neuronal discrimination of the form of the visual stimulus. Neirofiziologiya/Neurophysiology, Vol. 38, No. 1, pp. 61–71, January–February, 2006.  相似文献   

6.
Using extracellular recording of spike activity from single neurons of field 21a of the cat neocortex, we examined in detail the spatial organization of receptive fields (RFs) of such cells after conditions of presentation of an immobile blinking light spot (a static RF) and moving visual stimuli (dynamic RFs). As was shown, the excitability of different RF subfields of a group of neurons possessing homogeneous on–off organization of the static RF changes significantly depended on the contrast, shape, dimension, orientation, and direction of movement of the applied mobile visual stimulus. This is manifested in changes in the number of discharge centers and shifts of their spatial localization. A hypothesis on the possible role of synchronous activation of the neurons neighboring the cell under study in the formation of an additional neuronal mechanism providing specialization of neuronal responses is proposed.  相似文献   

7.
PURPOSE: Does a physiologically plausible model of the retinal ganglion cell (RGC) receptive field (RF) predict the spatial tuning properties of the Hermann Grid Illusion (HGI)? METHODS: The spatial tuning of a single intersection HGI was measured psychophysically in normal observers using a nulling technique at different vertical grid line luminances. We used a model based upon a standard RGC RF, balanced to produce zero response under uniform illumination, to predict the response of the model cell to the equivalent range of stimulus conditions when placed in either the 'street' or the 'intersection' of a single element of a Hermann grid. We determined the equivalent of the nulling luminance required to balance these responses and minimise the HGI. RESULTS: The model and the psychophysical data demonstrated broad spatial tuning with similarly shaped tuning profiles and similar strengths of illusion. The line width at the peak of the model tuning function was around twice the model RGC RF centre size. Modelling the psychophysical functions gave RF centre sizes smaller than expected from human anatomical evidence but similar to that suggested by primate physiological evidence. In the model and psychophysically the strength of the illusion varied with the luminance of the vertical grid line when HGI strength was expressed as a Michelson nulling contrast, but this effect was smaller when HGI strength was expressed as a nulling luminance. CONCLUSIONS: The shape, width, height and position of the spatial tuning function of the HGI can be well modelled by a RGC RF based model. The broad tuning of these functions does not appear to require a broad range of different cell sizes either in the retina or later in the visual pathway.  相似文献   

8.
外膝体是视觉信息进入新皮层的主要通路,其编码亮度信息的神经机制还不清楚.我们采用随机呈现的连续快速变化(50 Hz)的均匀亮度刺激,显著地提高了猫外膝体神经元对均匀亮度的反应强度,通过反相关算法抽提出神经元的亮度反应函数.约81%的神经元的亮度反应函数为单调性上升或下降,有19%的神经元亮度反应函数为V型.通过分析这些神经元对亮度上升和下降的反应强度与感受野ON和OFF反应强度的关系,表明83%的神经元对亮度的反应模式是由其感受野ON-OFF反应的相对强度决定的,其余17%则与其感受野ON-OFF区的兴奋和抑制的变化相关.这些结果揭示了外膝体神经元编码亮度变化的机制.  相似文献   

9.
Changes in visual receptive fields with microstimulation of frontal cortex   总被引:7,自引:0,他引:7  
The influence of attention on visual cortical neurons has been described in terms of its effect on the structure of receptive fields (RFs), where multiple stimuli compete to drive neural responses and ultimately behavior. We stimulated the frontal eye field (FEF) of passively fixating monkeys and produced changes in V4 responses similar to known effects of voluntary attention. Subthreshold FEF stimulation enhanced visual responses at particular locations within the RF and altered the interaction between pairs of RF stimuli to favor those aligned with the activated FEF site. Thus, we could influence which stimulus drove the responses of individual V4 neurons. These results suggest that spatial signals involved in saccade preparation are used to covertly select among multiple stimuli appearing within the RFs of visual cortical neurons.  相似文献   

10.
Functional differences between the type I and II receptive fields of the lateral geniculate body were studied in the cat. Some properties of these fields were shown to coincide with properties of "phasic" (Y type) and "tonic" (X type) of receptive fields. The type I fields have a limited range for transmission of information about the intensity of illumination; the type II fields, on the other hand, have a normal dynamic range of 2 log units. Using the number of spikes in groups as a measure of nervous activity, a neurophysiological scale of brightness corresponding to the psychological scale can be constructed on the basis of responses of the type II receptive field. It is postulated that type I receptive fields serve to transmit information on the shape of the image (spatial and temporal contrasts) and the type II fields transmit information on intensity of illumination. Investigation of the dynamic functional model showed that the type of receptive field is determined by the depth of inhibition through the interneuron. The depth of inhibition is much greater for type I than for type II.  相似文献   

11.
The reasons for using natural stimuli to study sensory function are quickly mounting, as recent studies have revealed important differences in neural responses to natural and artificial stimuli. However, natural stimuli typically contain strong correlations and are spherically asymmetric (i.e. stimulus intensities are not symmetrically distributed around the mean), and these statistical complexities can bias receptive field (RF) estimates when standard techniques such as spike-triggered averaging or reverse correlation are used. While a number of approaches have been developed to explicitly correct the bias due to stimulus correlations, there is no complementary technique to correct the bias due to stimulus asymmetries. Here, we develop a method for RF estimation that corrects reverse correlation RF estimates for the spherical asymmetries present in natural stimuli. Using simulated neural responses, we demonstrate how stimulus asymmetries can bias reverse-correlation RF estimates (even for uncorrelated stimuli) and illustrate how this bias can be removed by explicit correction. We demonstrate the utility of the asymmetry correction method under experimental conditions by estimating RFs from the responses of retinal ganglion cells to natural stimuli and using these RFs to predict responses to novel stimuli.  相似文献   

12.
Touryan J  Felsen G  Dan Y 《Neuron》2005,45(5):781-791
Neuronal receptive fields (RFs) play crucial roles in visual processing. While the linear RFs of early neurons have been well studied, RFs of cortical complex cells are nonlinear and therefore difficult to characterize, especially in the context of natural stimuli. In this study, we used a nonlinear technique to compute the RFs of complex cells from their responses to natural images. We found that each RF is well described by a small number of subunits, which are oriented, localized, and bandpass. These subunits contribute to neuronal responses in a contrast-dependent, polarity-invariant manner, and they can largely predict the orientation and spatial frequency tuning of the cell. Although the RF structures measured with natural images were similar to those measured with random stimuli, natural images were more effective for driving complex cells, thus facilitating rapid identification of the subunits. The subunit RF model provides a useful basis for understanding cortical processing of natural stimuli.  相似文献   

13.
1. The responses of Aurelia medusae to pharmacological agents and ionic variation were classified into four response types: Type I, no response; Type II, inhibition of pacemaker activity; Type III, inhibition of both pacemakers and swimming muscles; and Type IV, increase in pacemaker output. 2. The swimming pacemakers of Aurelia medusae become hyperactive in Mg+2-free solutions (Type IV). This response appears to be general in swimming scyphozoa. 3. The response pattern to pharmacologically-active compounds indicates that the coelenterate neuromuscular system is quite different than those in other phyla. In fact, the response spectrum is not consistent within the Cnidaria. 4. Similarly, the responses of adult medusae to ionic variation show no consistent pattern within various scyphomedusae. 5. Test solutions from each response type established with medusae were selected and tested on the scyphistoma and strobila stages. The comparison of the responses to the test solutions between the medusa, scyphistoma, and strobila showed that the neuromuscular systems are physiologically different. The strobila, specificially the ephyra, is a mixture of both polypoid and medusoid response types. The strobila, therefore, is physiologically an intermediate stage in the development of the adult medusa.  相似文献   

14.
When a stop codon appears at the ribosomal A site, the class I and II release factors (RFs) terminate translation. In eukaryotes and archaea, the class I and II RFs form a heterodimeric complex, and complete the overall translation termination process in a GTP-dependent manner. However, the structural mechanism of the translation termination by the class I and II RF complex remains unresolved. In archaea, archaeal elongation factor 1 alpha (aEF1α), a carrier GTPase for tRNA, acts as a class II RF by forming a heterodimeric complex with archaeal RF1 (aRF1). We report the crystal structure of the aRF1·aEF1α complex, the first active class I and II RF complex. This structure remarkably resembles the tRNA·EF–Tu complex, suggesting that aRF1 is efficiently delivered to the ribosomal A site, by mimicking tRNA. It provides insights into the mechanism that couples GTP hydrolysis by the class II RF to stop codon recognition and peptidyl-tRNA hydrolysis by the class I RF. We discuss the different mechanisms by which aEF1α recognizes aRF1 and aPelota, another aRF1-related protein and molecular evolution of the three functions of aEF1α.  相似文献   

15.
Study of receptive fields (RFs) of neurones in the postero-temporal cortex (field 21) of alert cat at three levels of visual adaptation: light photopic, light mesopic and practically dark or extremely low scotopic adaptations--revealed invariance of the most part of the studied RFs to the level of visual adaptation. Reorganization of RFs, connected with change of background luminosity were observed only in 12% of visually activated neurones. Significant reduction of responses to optic stimulation is shown at increase of the level of luminosity in 75% of neurones, revealing adaptive reorganizations. It is suggested that these reorganizations may take place in analogy with neurones of the field 17 on account of different involvement of intracortical inhibitory mechanisms (and, probably, not only in the postero-temporal cortex, but also in structures which precede it in visual hierarchy). Study of neurones sensitivity in the field 21 to parameters of optic stimulation revealed their considerable invariance to the length and orientation of the optic stimulus moving through the RF (60% of cases). Testing of RF by a rhombic optic stimulus did not change neuronal reactions, the form and dimensions of RF did not significantly change.  相似文献   

16.
The physiology of mechanoreceptive lateral line areas was investigated in the thornback guitarfish, Platyrhinoidis triseriata, from medulla to telecephalon, using averaged evoked potentials (AEPs) and unit responses as windows to brain functions. Responses were analysed with respect to frequency sensitivity, intensity functions, influence of stimulus repetition rate, response latency, receptive field (RF) organization and multimodal interaction. 1. Following a quasi-natural vibrating sphere stimulus, neural responses were recorded in the medullary medial octavolateralis nucleus (MON), the dorsal (DMN) and anterior (AN) nucleus of the mesencephalic nuclear complex, the diencephalic lateral tuberal nucleus (LTN), and a telencephalic area which may correspond to the medial pallium (Figs. 2, 3, 13, 14, 15, 16). 2. Within the test range of 6.5-200 Hz all lateral line areas investigated responded to minute water vibrations. Best frequencies (in terms of displacement) were between 75 and 200 Hz with threshold values for AEPs as low as 0.005 microns peak-to-peak (p-p) water displacement calculated at the skin surface (Fig. 6). 3. AEP-responses to a vibrating sphere stimulus recorded in the MON are tonic or phasic-tonic, i.e., responses are strongest at stimulus onset but last for the whole stimulus duration in form of a frequency following response (Fig. 3). DMN and AN responses are phasic or phasic-tonic. Units recorded in the MON are phase coupled to the stimulus, those recorded in the DMN, AN or LTN are usually not (Figs. 5, 8, 9). Diencephalic LTN and telencephalic lateral line responses (AEPs) often are purely phasic. However, in the diencephalic LTN tonic and/or off-responses can be recorded (Fig. 11). 4. For the frequencies 25, 50, and 100 Hz, the dynamic intensity range of lateral line areas varies from 12.8 to at least 91.6 dB (AEP) respectively 8.9 and 92 dB (few unit and single unit recordings) (Fig. 7). 5. Mesencephalic, diencephalic, and telecephalic RFs, based on the evaluation of AEPs or multiunit activity (MUA), are usually contralateral (AN and LTN) or ipsi- and contralateral (telencephalon) and often complex (Figs. 10, 12, 16). 6. In many cases no obvious interactions between different modalities (vibrating sphere, electric field stimulus, and/or a light flash) were seen. However, some recording sites in the mesencephalic AN and the diencephalic LTN showed bimodal interactions in that an electric field stimulus decreased or increased the amplitude of a lateral line response and vice versa (Fig. 13 B).  相似文献   

17.
The perception of blur in images can be strongly affected by prior adaptation to blurry images or by spatial induction from blurred surrounds. These contextual effects may play a role in calibrating visual responses for the spatial structure of luminance variations in images. We asked whether similar adjustments might also calibrate the visual system for spatial variations in color. Observers adjusted the amplitude spectra of luminance or chromatic images until they appeared correctly focused, and repeated these measurements either before or after adaptation to blurred or sharpened images or in the presence of blurred or sharpened surrounds. Prior adaptation induced large and distinct changes in perceived focus for both luminance and chromatic patterns, suggesting that luminance and chromatic mechanisms are both able to adjust to changes in the level of blur. However, judgments of focus were more variable for color, and unlike luminance there was little effect of surrounding spatial context on perceived blur. In additional measurements we explored the effects of adaptation on threshold contrast sensitivity for luminance and color. Adaptation to filtered noise with a 1/f spectrum characteristic of natural images strongly and selectively elevated thresholds at low spatial frequencies for both luminance and color, thus transforming the chromatic contrast sensitivity function from lowpass to nearly bandpass. These threshold changes were found to reflect interactions between different spatial scales that bias sensitivity against the lowest spatial grain in the image, and may reflect adaptation to different stimulus attributes than the attributes underlying judgments of image focus. Our results suggest that spatial sensitivity for variations in color can be strongly shaped by adaptation to the spatial structure of the stimulus, but point to dissociations in these visual adjustments both between luminance and color and different measures of spatial sensitivity.  相似文献   

18.
In the bullfrog, two types of slowly adapting (SA) cutaneous mechanoreceptor afferent units have been identified physiologically: irregularly discharging frog type I (Ft I) units in both warty and nonwarty skin, and regularly discharging frog type II (Ft II) units in the nonwarty skin. In the present study, mechanosensitive spots of Ft I units were located around the skin warts in the warty skin. The quinacrine technique (Crowe and Whitear, 1978) revealed that quinacrine-accu-mulating Merkel cells were present around the skin warts and near the orifice of skin glands that also surrounded the skin warts. Thus, a significant correlation was found between the location of Merkel cells and the receptive fields (RFs) of Ft I units in the warty skin.

Direct current (DC) stimulation was applied for 1 sec to the skin inside and outside the mechanical RFs of the two types of SA units. RFs for DC stimulation were located on those for mechanical stimulation in both types of SA units. The current threshold required to produce a single spike was lower in cathodal than in anodal pulses in both types of SA units. Greater current intensity elicited an increased number of spikes, but the effective polarity of currents was anodal for Ft I units and cathodal for Ft II units. The optimal current intensity for producing prolonged discharges ranged from +60 to +100 μA in Ft I units and from -50 to -80 μA in Ft II units. The sequence of impulses evoked was irregular in Ft I units and regular in Ft II units, as seen in mechanical responses. When current of the effective polarity for each type of unit was superimposed on the mechanical indentations, it facilitated the mechanical response. Currents of opposite polarity were not effective without mechanical indentation, but when used together, they depressed the mechanical response in both the Ft I units and the Ft II units. Thus, different polarities of DC could selectively activate two different types of SA units in bullfrogs. We consider these findings in connection with a presumed receptor structure for each type of unit; it is likely that the prolonged discharges in the Ft I unit are produced by active involvement of Merkel cells, whereas those in Ft II units are the result of a direct activation of afferent nerve terminals.  相似文献   

19.
The ability to resolve two closely spaced cutaneous stimuli presumably depends upon the degree of overlap between the two populations of responding neurons. The degree of overlap is determined by receptive field (RF) geometry and location, and by interactive factors such as lateral inhibition. In this paper, we first consider some aspects of RFs that would be expected to influence two-point acuity.

In some somatosensory brain regions, relatively few RFs overlap the body midline. As would be expected, discrimination is enhanced for two points straddling the backbone. This does not simply reflect a mediolateral gradient of acuity, as we found higher acuity laterally.

On the limbs, where RFs are elongated along the length of the limb, transverse two-point acuity was greater than longitudinal acuity. However, on the back, where RFs are fairly round, there was an even larger orientation effect, with two-point acuity greater for stimuli longitudinal than for stimuli transverse to the spine.

Thus, the substantial variation of two-point acuity with stimulus orientation on the back cannot be explained by RF geometry alone. We discuss the possibility that differences in lateral inhibition and degree of similarity in dermatomal composition contribute to the observed stimulus orientation effects.  相似文献   

20.
Spatiotemporal structures of receptive-fields (RF) have been studied for simple cells in area 18 of eat by measuring the temporal transfer function (TTF) over different locations (subregions) within the RF. The temporal characteristics of different subregions differed from each other in the absolute phase shift (APS) to visual stimuli. Two types of relationships can be seen: (i)The APS varied continuously from one subregion to the next: (ii) A 180°-phase jump was seen as the stimulus position changed somewhere within the receptive field. Spatiotemporal receptive field profiles have been determined by applying reverse Fourier analysis to responses in the frequency domain. For the continuous type, spatial and temporal characteristics cannot be dissociated (space time inseparable) and the spatiotemporal structure is oriented. On the contrary, the spatial and temporal characteristics for the jumping type can be dissociated (space-time separable) and the structure is not oriented in the space-time plane. Based on the APSs measured at different subregions, the optimal direction of motion and optimal spatial frequency of neurons can be predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号