首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The half-time for oxidation of cytochrome b(557) in mitochondria from etiolated mung bean (Phaseolus aureus) hypocotyls is 5.8 milliseconds at 24 Celsius in the absence or presence of 0.3 mm KCN, when the oxidation is carried out by injecting a small amount of oxygenated medium into a suspension of mitochondria made anaerobic in the presence of succinate plus malonate. Since oxygen is consumed by the alternate, cyanide-insensitive respiratory pathway of these mitochondria, cycles of oxidation and reduction can be obtained with the oxygen pulses when cyanide is present. Reduced cytochromes (a + a(3)) also become oxidized at nearly the uninhibited rate under these conditions, a(3) completely and a partially. The half-time for oxidation of c(547) is also unaffected by 0.3 mm KCN, but c(549) has a half-time equal to that of c(547) in the presence of KCN, compared to the shorter one observed in the absence of inhibitor. The maximum extent of oxidation of the cytochromes c is about 70% in the presence of 0.3 mm KCN; this oxidation is rapidly followed by an extensive reduction which is synchronous with the reduction of cytochrome a observed under the same conditions. In the presence of cyanide, it appears likely that the cytochromes c and b(557) are oxidized by cytochrome oxidase in oxygen pulse experiments, rather than by the alternate oxidase. The oxidation of cytochrome b(553) is partially inhibited by KCN, but complete oxidation is attained in the aerobic steady state with excess oxygen. If the oxygen pulse experiment is carried out in the presence of sufficient malonate so that entry of reducing equivalents into the respiratory chain occurs at a rate negligible compared to inter-carrier electron transport, the half-time for flavoprotein oxidation is unaffected by 0.3 mm KCN while that for ubiquinone oxidation is but 2-fold larger. The observed net oxidation rate of these two carriers in mung bean mitochondria is more sensitive to the entry rate of reducing equivalents, as set by succinate concentration and malonate to succinate ratio, then it is in skunk cabbage (Symplocarpus foetidus) mitochondria. These observations are interpreted in terms of a respiratory carrier Y, placed between flavoprotein plus ubiquinone and the cytochromes, which is the fork in the split respiratory pathway to the two terminal oxidases and which has lower electron transport capacity in mung bean mitochondria than in skunk cabbage mitochondria.  相似文献   

2.
The oxidation kinetics of the two high potential flavo-proteins, one (Fphf) fluorescent and the other (Fpha) nonfluorescent, in mitochondria from skunk cabbage (Symplocarpus foetidus) spadices have been measured by combined spectrophotometry and fluorimetry. In the absence of respiratory inhibitors, both flavoproteins are oxidized at nearly the same rate with half-times between 120 and 160 milliseconds at 24 C. When slight differences in rate are observed, it is Fpha which consistently has the shorter half-time. The presence of 0.3 millimolar KCN has no perceptible effect on the oxidation rate of either component. Antimycin A (2 nanomoles per milligram of protein) increases the oxidation half-time of Fpha about 3-fold, but it has no effect on the oxidation half-time of Fphf. In contrast to these two inhibitors, m-chlorobenzhydroxamic acid—an inhibitor specific to the cyanide insensitive, alternate oxidase pathway in these mitochondria—increases the oxidation half-time of Fphf 10-fold to about 2 seconds, while increasing that of Fpha only some 20%. This result implies that the flavoprotein Fphf mediates electron transport to the alternate oxidase from the region of the mitochondrial respiratory chain encompassing Fpha, ubiquinone, and the cytochromes b. The oxidation rate of cytochrome b557 is unaffected by either m-chlorobenzhydroxamic acid or cyanide but is strongly inhibited by antimycin A. This result implies that cytochrome b557 plays no direct role in the respiratory pathway to the alternate oxidase and is different from cytochrome b7 found in mitochondria from the spadices of Arum maculatum.  相似文献   

3.
Storey BT 《Plant physiology》1974,53(6):846-850
During the transition from the aerobic steady state with succinate as substrate to anaerobiosis, in suspensions of skunk cabbage (Symplocarpus foetidus) mitochondria treated with antimycin A, cytochrome b(562) becomes reoxidized to the extent of about 20%, synchronously with the reduction of cytochrome c(549). This reoxidation occurs in both the absence and presence of m-chlorobenzhydroxamic acid, a specific inhibitor for the alternate terminal oxidase of plant mitochondria. A flavoprotein component, amounting to 13% to 15% of the total nonfluorescent mitochondrial flavoprotein, undergoes reduction synchronously with the oxidation of cytochrome b(562) during the aerobic to anaerobic transition with succinate as substrate in the presence of both antimycin A and m-chlorobenzhydroxamic acid. This flavoprotein component remains reduced in the presence of cyanide. The half-time for reduction of the flavoprotein component and cytochrome c(549) and for oxidation of cytochrome b(562) during the aerobic to anaerobic transition with succinate as substrate in the presence of both antimycin A and m-chlorobenzhydroxamic acid is 2 seconds. The half-times for oxidation of cytochrome c(549) and the flavoprotein component are 2.1 and 170 milliseconds, respectively, during the anaerobic to aerobic transition induced by addition of 14 mum O(2) to the mitochondrial suspensions. The half-time for reduction of cytochrome b(562) under these conditions is 150 milliseconds, synchronous with the flavoprotein component. The synchrony of the flavoprotein oxidation and of the cytochrome b(562) reduction at a rate much slower than that of cytochrome c(549) oxidation implies that, in antimycin-treated plant mitochondria, the state of the cytochrome b(562)/antimycin complex is regulated by the redox state of this flavoprotein component, rather than by cytochrome c(549). It is tentatively suggested that these two components are not part of the main sequence of the respiratory chain, but may be part of a multienzyme complex active in the hydroxylation reactions required for ubiquinone biosynthesis in the inner mitochondrial membrane.  相似文献   

4.
5.
The kinetics of oxidation of ubiquinone, flavoprotein, cytochrome c, and the cytochrome b complex in skunk cabbage (Symplocarpus foetidus) mitochondria made anaerobic with succinate have been measured spectrophotometrically and fluorimetrically in the absence of respiratory inhibitor and in the presence of cyanide or antimycin A. No component identifiable by these means was oxidized rapidly enough in the presence of one or the other inhibitor to qualify for the role of alternate oxidase. Cycles of oxidation and rereduction of flavoprotein and ubiquinone obtained by injecting 12 mum oxygen into the anaerobic mitochondrial suspension were kinetically indistinguishable in the presence of cyanide or antimycin A, implying that these 2 components are part of a respiratory pathway between succinate and oxygen which does not involve the cytochromes and does involve a cyanide-insensitive alternate oxidase. The cytochrome b complex shows biphasic oxidation kinetics with half times of 0.018 sec and 0.4 sec in the absence of inhibitor, which increase to 0.2 sec and 1 sec in the presence of cyanide. In the presence of antimycin A, the oxidation of the cytochrome b complex shows an induction period of 1 sec and a half-time of 3.5 sec. A split respiratory chain with 2 terminal oxidases and a branch point between the cytochromes and flavoprotein and ubiquinone is proposed for these mitochondria.  相似文献   

6.
Mitochondria were prepared from the spadices of skunk cabbage (Symplocarpus foetidus) whose respiratory rate with succinate and malate showed 15% to 30% sensitivity to cyanide inhibition, and which showed respiratory control by added ADP. The observed respiratory control ratios ranged from 1.1 to 1.4. The change in pH of the mitochondrial suspension was recorded simultaneously with oxygen uptake: alkalinization of the medium, expected for phosphorylation of ADP, coincided with the period of acceleration in oxygen uptake caused by addition of an ADP aliquot. The ADP/O ratios obtained were 1.3 for succinate and 1.9 for malate. In the presence of 0.3 mm cyanide, the ADP/O ratio for succinate was zero, while that for malate was 0.7. These results are consistent with the existence of an alternate oxidase which interacts with the flavoprotein and pyridine nucleotide components of the respiratory chain and which, in the presence of cyanide, allows the first phosphorylation site to function with an efficiency of about 70%. In the absence of respiratory inhibitors, the efficiency of each phosphorylation site is also about 70%. This result implies that diversion of reducing equivalents through the alternate oxidase, thereby bypassing the 2 phosphorylation sites associated with the cytochrome components of these mitochondria, occurs to a negligible extent during the oxidative phosphorylation of ADP or State 3.Addition of ADP or uncoupler to skunk cabbage mitochondria respiring in the controlled state or State 4, results in reduction of cytochrome c and the oxidation of the cytochromes b, ubiquinone and pyridine nucleotide. A site of interaction of ADP with the respiratory chain between cytochromes b and cytochrome c is thereby identified by means of the crossover theorem. Flavoprotein measured by fluorescence is also oxidized upon addition of ADP or uncoupler, but flavoprotein measured by optical absorbance changes becomes more reduced under these conditions. Depletion of the mitochondria by pretreatment with ADP and uncoupler prevents reduction of most of the fluorescent flavoprotein by succinate. These results indicate that skunk cabbage mitochondria contain both high and low potential flavo-proteins characterized by different fluorescence/absorbance ratios similar to those demonstrated to be part of the respiratory chain in mitochondria from animal tissues.  相似文献   

7.
Arima, Kei (University of Tokyo, Tokyo, Japan), and Tetuo Oka. Cyanide resistance in Achromobacter. I. Induced formation of cytochrome a(2) and its role in cyanide-resistant respiration. J. Bacteriol. 90:734-743. 1965.-By following the cytochrome concentrations during the growth cycle and under various conditions (aerobic, aerobic plus KCN, reduced aeration, anaerobic plus NaNO(3)) in Achromobacter strain D, a close relationship between the formation of cytochrome a(2) (and a(1)) and the difficulty of oxygen utilization was demonstrated. Cytochrome o, which was the only oxidase found in aerobic log-phase cells, was present in bacterial cells grown under various conditions; the amount present had no relation to the degree of cyanide resistance. On the other hand, cytochrome a(2) (and a(1)) was inducible, and a close relation was observed between the amount of cytochrome and resistance to cyanide. Spectrophotometric observations indicated that, among the cytochromes present in resistant cells, cytochrome a(2) could be oxidized most easily in the presence of cyanide and that cytochrome b(1) could be oxidized without the oxidation of cytochrome a(1). We concluded that cytochrome a(2) is a cyanide-resistant oxidase capable of catalyzing the oxidation of cytochromes in the presence of cyanide. Cytochrome a(2) is also resistant to azide, an inhibitor of cytochrome oxidase.  相似文献   

8.
Low temperature (9-15 K) EPR of isolated bovine heart cytochrome oxidase titrated potentiometrically in the presence of azide reveals the formation of two distinct species of low-spin cytochrome a3(III)-azide which differ in redox properties and g values. Both species are formed with characteristic midpoint potentials during the course of oxidative titration and disappear at higher potentials. The signal appearing at lower potential has principal g values 2.88, 2.19, and 1.64; that appearing at higher potential has g values 2.77, 2.18, and 1.74. A good fit to the experimental data (per cent of cytochrome present in a given paramagnetic state versus oxidation potential) was obtained with a model whereby the gz = 2.88 species arises from cytochrome a3(III)-azide with cytochrome a reduced, which is converted to the gz = 2.77 species upon oxidation of cytochrome a. Potentiometric titration of cytochrome oxidase in the presence of cyanide produces two low-spin heme EPR signals attributable to cytochrome a3(III)-cyanide which are incompletely resolved, but are distinguishable nonetheless. The low-potential signal has peak amplitude at gz = 3.63 and a long high-field tail; this resonance has been seen by other workers in the partially reduced enzyme (DerVartanian, D. V., Lee, I. Y., Slater, E. C., and van Gelder, B. F. (1974) Biochim. Biophys. Acta 347, 321-327). The high-potential signal is much more symmetric about its peak amplitude, which is at approximately 10 G higher field with gz = 3.61. As with the azide complex, the titration behavior in the presence of 2 mM KCN is adequately simulated by assuming that the appearance of the two species is a function of the oxidation state of cytochrome a. Like the a3-azide signals, the a3-cyanide signals disappear upon further oxidation with some characteristic midpoint potential. If the disappearance of the a3-ligand signals with increasing potential is assumed to be the result of antiferromagnetic (or ferromagnetic) coupling of a3(III) (S = 1/2) to CuB(II) (S = 1/2), then cooperativity between cytochrome a and CuB is implied. The data are consistent with the hypothesis that oxidation of cytochrome a raises the midpoint potential of CuB by 55 +/- 10 mV.  相似文献   

9.
Storey BT 《Plant physiology》1970,46(4):625-630
Addition of 90 micromolar reduced nicotinamide adenine dinucleotide (NADH) in the presence of cyanide to a suspension of aerobic mung bean (Phaseolus aureus) mitochondria depleted with ADP and uncoupler gives a cycle of reduction of electron transport carriers followed by reoxidation, as NADH is oxidized to NAD+ through the cyanide-insensitive, alternate oxidase by excess oxygen in the reaction medium. Under these conditions, cytochrome b553 and the nonfluorescent, high potential flavoprotein Fpha of the plant respiratory chain become completely reduced with half-times of 2.5 to 2.8 seconds for both components. Reoxidation of flavoprotein Fpha on exhaustion of NADH is more rapid than that of cytochrome b553. There is a lag of 1.5 seconds after NADH addition before any reduction of ubiquinone can be observed, whereas there is no lag perceptible in the reduction of flavoprotein Fpha and cytochrome b553. The half-time for ubiquinone reduction is 4.5 seconds, and the extent of reduction is 90% or greater. About 30% of cytochrome b557 is reduced under these conditions with a half-time of 10 seconds; both cytochrome b562 and the fluorescent, high potential flavoprotein Fphf show little, if any, reduction. The two cytochromes c in these mitochondria, c547 and c549, are reduced in synchrony with a half-time of 0.8 second. These two components are already 60% reduced in the presence of cyanide but absence of substrate, and they become completely reduced on addition of NADH. These results indicated that reducing equivalents enter the respiratory chain from exogenous NADH at flavoprotein Fpha and are rapidly transported through cytochrome b553 to the cytochromes c; once the latter are completely reduced, reduction of ubiquinone begins. Ubiquinone appears to act as a storage pool for reducing equivalents entering the respiratory chain on the substrate side of coupling site 2. It is suggested that flavoprotein Fpha and cytochrome b553 together may act as the branching point in the plant respiratory chain from which forward electron transport can take place to oxygen through the cytochrome chain via cytochrome oxidase, or to oxygen through the alternate, cyanide-insensitive oxidase via the fluorescent, high potential flavoprotein Fphf.  相似文献   

10.
Mitochondria isolated from mesophyll protoplasts differed from mitochondria isolated directly from leaves of Avena sativa in that protoplast mitochondria (a) had a lower overall respiratory capacity, (b) were less able to use low concentrations of exogenous NADH, (c) did not respond rapidly or strongly to added NAD, (d) appeared to accumulate more oxaloacetate, and (e) oxidized both succinate and tetramethyl-p-phenylene-diamine (an electron donor for cytochrome oxidase) more slowly than did leaf mitochondria. It is concluded that cytochrome oxidase activity was inhibited, the external NADH dehydrogenase had a reduced affinity for NADH, succinate oxidation was inhibited, NAD and oxaloacetate porters were probably inhibited, and accessibility to respiratory paths may have been reduced in protoplast mitochondria. The results also suggest that there was a reduced affinity of a succinate porter for this substrate in oat mitochondria. In addition, all oat mitochondria required salicylhydroxamic acid (SHAM) as well as cyanide to block malate and succinate oxidation. Malate oxidation that did not appear to saturate the cytochrome pathway was sensitive to SHAM in the absence of cyanide, suggesting that the oat mitochondria studied had concomitant alternative and subsaturating cytochrome oxidase pathway activity.  相似文献   

11.
Redox changes of the flavoproteins of mung bean (Phaseolus aureus) mitochondria were measured by differential absorbance at 468 to 493 nanometers and by fluorescence emission above 500 nanometers excited at 436 nanometers. Four flavoproteins are distinguishable by the ratio of their fluorescence to absorbance changes, and by their requirement, or lack of it, for energy-linked reverse electron transport for reduction by succinate. Two flavoproteins are reduced by succinate in fully depleted mitochondria which lack the capacity for reverse electron transport. These are designated Fpha and Fphf and have fluorescence to absorbance ratios of 0 and 1.4, respectively. The two flavoproteins have the same half-time for oxidation, but Fphf is reduced more slowly than Fpha by substrate in the presence of cyanide. One flavoprotein with a fluorescence to absorbance ratio of 0 is not reduced by succinate in anaerobic, fully depleted mitochondria, but is rapidly reduced on subsequent addition of malate; it is designated Fpm. The fourth distinguishable flavoprotein component is reducible by succinate in an energy-linked reaction, even in partially depleted mitochondria. This component has a fluorescence to absorbance ratio of 3.8 and is designated Fp1f. In addition to these four flavoproteins reducible by substrates, there is a highly fluorescent flavin-containing component in or associated with these mitochondria, which is rapidly reduced by dithionite.  相似文献   

12.
The respiratory system of a cyanide-resistant Klebsiella oxytoca was analyzed by monitoring the changes in the cytochrome contents in response to various inhibitors in the presence of various concentrations of cyanide. The cells grown in the medium without cyanide (KCN) have two terminal oxidases, cytochrome d (Ki = 10(-5) M KCN) and o (Ki = 10(-3) M KCN). When cells were grown on medium with 1 mM KCN, the expression of both b-type cytochrome and cytochrome d in the plasma membranes of the cell decreased by more than 50%, while cytochrome o increased by 70%, as compared with the cells grown in the absence of KCN. Two terminal oxidases with Ki values of about 10(-3) M and 1.7 x 10(-2) M KCN were observed in the plasma membrane fractions of the cells growing on KCN enriched medium. 2-n-Heptyl-4-hydroxyquinoline-N-oxide markedly inhibited the oxidation of NADH by the plasma membranes from the cells grown in the medium without KCN, but not in those plasma membranes from KCN-grown cells. The NADH oxidases in plasma membranes of K. oxytoca grown with and without KCN were equally sensitive to UV irradiation. Adding freshly isolated quinone to the UV-damaged plasma membranes restored the NADH oxidase activity from both types of plasma membranes. From these results, we propose the presence of a non-heme type of terminal oxidase to account for the KCN resistance in K. oxytoca.  相似文献   

13.
P Joliot  A Verméglio  A Joliot 《Biochemistry》1990,29(18):4355-4361
Light-induced oxidation of the primary electron donor P and of the secondary donor cytochrome c2 was studied in whole cells of Rhodospirillum rubrum in the presence of myxothiazole to slow down their reduction. 1. The primary and secondary electron donors are close to thermodynamic equilibrium during continuous illumination when the rate of the electron transfer is light-limited. This implies a long-range thermodynamic equilibration involving the diffusible cytochrome c2. A different behavior is observed with Rhodobacter sphaeroides R26 whole cells, in which the cytochrome c2 remains trapped within a supercomplex including reaction centers and the cytochrome b/c complex [Joliot, P., et al. (1989) Biochim. Biophys. Acta 975, 336-345]. 2. Under weak flash excitation, the reduction kinetics of the photooxidized primary donor are nearly exponential with a half-time in the hundred microseconds time range. 3. Under strong flash excitation, the reduction of the photooxidized primary donor follows a second-order kinetics. About half of the photooxidized primary donor is reduced in a few milliseconds while the remainder stays oxidized for hundreds of milliseconds despite an excess of secondary donors in their reduced form. The flash intensity dependence of the amplitude of the slow phase of P+ reduction is proportional to the square of the fraction of reaction centers that have undergone a charge separation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effect of a series of respiratory inhibitors on the oxidation of NADH in state 4 and state 3 conditions was studied with corn shoot mitochondria. Comparisons were made using malate and succinate as substrates. The inhibitors, rotenone, amytal, antimycin A and cyanide, inhibited oxidation of NADH in state 3 but rotenone and amytal did not inhibit oxidation in state 4. The inhibition by antimycin A was partially overcome by the presence of cytochrome c. The results indicate the presence of alternative pathways available for NADH oxidation depending on the metabolic condition of the mitochondria. Under state 4 conditions, NADH oxidation bypasses the amytal and rotenone sensitive sites but under state 3 conditions a component of the NADH respiration appears to be oxidized by an internal pathway which is sensitive to these inhibitors. Still a third pathway for NADH oxidation is dependent on the addition of cytochrome c and is insensitive to antimycin A. Succinate oxidation was sensitive to cyanide and antimycin A under both state 4 and state 3 conditions as well as amytal and rotenone under state 3 conditions but was not inhibited by amytal and rotenone under state 4 conditions. Malate oxidation was inhibited by cyanide, rotenone and amytal under both state 4 and state 3 conditions. Antimycin A inhibited state 3 but did not appreciably alter state 4 rates of malate oxidation. With all substrates tested inhibition by antimycin A was greatly facilitated by preswelling the mitochondria for 10 min. This was interpreted to indicate that swelling increases the accessibility of antimycin A to the site of inhibition.  相似文献   

15.
The involvement of cytochromes in the electron-transport pathway to the periplasmic NO3- reductase of Rhodobacter capsulatus was studied in cells grown photoheterotrophically in the presence of nitrate with butyrate as carbon source. The specific rate of NO3- reduction by such cells was five times higher than when malate was carbon source. Reduced minus NO3(-)-oxidized spectra of cells had peaks in the alpha-band region for cytochromes at 552 nm and 559 nm, indicating the involvement of c- and b-type cytochromes in the electron-transport pathway to NO3-. The total ferricyanide-oxidizable cytochrome that was also oxidized in the steady state by NO3- was greater in cells grown with butyrate rather than malate. Low concentrations of cyanide inhibited NO3- reduction. Neither CN-, nor a previously characterized inhibitor of NO3- reduction, 2-n-heptyl-4-hydroxyquinoline N-oxide, prevented the oxidation of the cytochromes by NO3-. This suggested a site of action for these inhibitors on the reducing side of the b- and c-type cytochromes involved in electron transport to the NO3- reductase. The predominant cytochrome in a periplasmic fraction prepared from cells of R. capsulatus grown on butyrate medium was cytochrome c2 but a c-type cytochrome with an alpha-band reduced absorbance maximum at 552 nm could also be identified. The reduced form of this latter cytochrome, but not that of cytochrome c2, was oxidized upon addition of NO3- to a periplasmic fraction. The NO3(-)-oxidizable cytochrome co-purified with the periplasmic NO3- reductase through fractionation procedures that included ammonium sulphate precipitation, gel filtration at low and high salt concentrations, and ion-exchange chromatography. A NO3(-)-reductase-cytochrome-c552 redox complex that comprised two types of polypeptide, a nitrate reductase subunit and a c-type cytochrome subunit, was purified. The polypeptides were separated when the complex was chromatographed on a phenyl-Sepharose hydrophobic chromatography column.  相似文献   

16.
Electron transport was studied in heterocysts of the filamentous cyanobacterium Anabaena 7120 using spectral and kinetic analysis of absorbance transients elicited by single turnover flashes. Consistent photosynthetic turnovers were observed only in the presence of an exogenous source of reductant; therefore measurements were routinely made under a gas phase containing H2. Prominent absorbance changes corresponding to the oxidation of cytochrome c (554 nm) and the reduction of cytochrome b563 (563 nm) were observed. Under the most reducing conditions (99% H2/1% O2) cytochrome b563 was partially reduced between flashes in a slow, dark reaction. At 10-15% O2, the slow, dark reduction of cytochrome b563 was eliminated. Cytochrome turnover ceased entirely at high O2 concentrations (30%) but was restored by the addition of 25 microM KCN, demonstrating an interaction between the photosynthetic and respiratory electron transfer chains. Strobilurin A slowed the re-reduction of cytochrome c and eliminated the appearance of reduced cytochrome b563 by blocking electron transfer between reduced plastoquinone and the cytochrome b/f complex. Inhibition at a second site was apparent with 2-(n-heptyl)-4-hydroxyquinoline N-oxide, which blocked the reoxidation of cytochrome b563 but had little effect on cytochrome c relaxation. In uncoupled heterocysts, the rates of cytochrome c re-reduction and cytochrome b563 reduction were equal. Additional unassigned absorbance changes at 475 nm, 515 nm, and 572 nm were partially characterized. No absorbance change corresponding to an electrochromic shift was observed.  相似文献   

17.
High and low spin complexes of ferric and ferrous heme a have been prepared and characterized spectroscopically. Bis(1-methylimidazole) heme a provides a good model for cytochrome a in both oxidation states while several spectral properties of cytochrome a3 can be reproduced by 1,2-dimethylimidazole heme a3. The visible absorbance spectra of these analogs account well for the absorbance spectra of oxidized and reduced cytochrome oxidase and support the conclusion (Vanneste, W. (1966) Biochemistry 5, 838-848) that cytochrome a provides the major contribution to the spectral changes in the 600 nm band upon reduction. The 655 nm band present in cytochrome oxidase appears to be a characteristic of high spin heme a+3.  相似文献   

18.
Storey BT 《Plant physiology》1972,49(3):314-322
The cytochromes c of mung bean (Phaseolus aureus) mitochondria become reduced when sulfide, a cytochrome oxidase inhibitor free from uncoupling side effects, is added to the aerobic mitochondrial suspension in the absence of added substrate. The cytochromes b remain largely oxidized. Subsequent addition of ATP results in partial oxidation of the cytochromes c and partial reduction of the cytochromes b due to ATP-driven reverse electron transport through the second site of energy conservation, or coupling site, of the respiratory chain. Cytochrome a is also oxidized under these conditions, but there is no concomitant reduction of the flavoprotein components, of ubiquinone, or of endogenous pyridine nucleotide. The reaction is abolished by oligomycin. The reducing equivalents transported from the cytochromes c and a in ATP-driven reverse electron transport are about 2-fold greater than those which appear in the cytochromes b. It is suggested that the equivalents not accounted for are present in a coupling site enzyme at the second site of energy conservation which interacts with the respiratory chain carriers by means of the dithiol-disulfide couple; this couple would not show absorbance changes with redox state over the wavelength range examined. With succinate present, reverse electron transport can be demonstrated at both coupling sites in both the aerobic steady state and in anaerobiosis. ATP-driven reverse electron transport in anaerobiosis maintains cytochrome a 30% oxidized while endogenous pyridine nucleotide is 50% reduced.  相似文献   

19.
The binding of cyanide to both oxidized and ascorbate-reduced forms of Pseudomonas cytochrome c-551 oxidase was investigated. Spectral studies on the oxidized enzyme and its apoprotein showed that the ligand can bind to both the c and d, haem components of the molecule, and kinetic observations indicated that both chromophores reacted, under a variety of conditions, with very similar rates. Cyanide combination velocities were dependent on ligand concentration, and increasing the pH also accelerated the reaction; the second-order rate constant was estimated as approx. 0.2M-1 . s-1 at pH 7.0. The binding of cyanide to the protein was observed to have a considerable influence on reduction of the enzyme by ascorbate. Spectral and kinetic observations have revealed that the species haem d13+-cyanide and any unbound haem c may react relatively rapidly with the reductant, but the behaviour of cyanide-bound haem c indicates that it may not be reduced without prior dissociation of the ligand, which occurs relatively slowly. The reaction of reduced Pseudomonas cytochrome oxidase with cyanide is radically different from that of the oxidized protein. In this case the ligand only binds to the haem d1 component and reacts much more rapidly. Stopped-flow kinetic measurements showed the binding to be biphasic in form. Both the rates of these processes were dependent on cyanide concentration, with the fast phase having a second-order rate constant of 9.3 X 10(5) M-1 . s-1 and the slow phase one of 2.3 X 10(5) M-1 . s-1. The relative proportions of the two phases also showed a dependency on cyanide concentration, the slower phase increasing as the cyanide concentration decreased. Computer simulations indicate that a reaction scheme originally proposed for the reaction of the enzyme with CO is capable of providing a reasonable explanation of the experimental results. Static-titration data of the reduced enzyme with with cyanide indicated that the binding was non-stoicheiometric, the ligand-binding curve being sigmoidal in shape. A Hill plot of the results yielded a Hill coefficient of 2.6.  相似文献   

20.
Laser-Activated Electron Transport in a Chlamydomonas Mutant   总被引:3,自引:3,他引:0  
Following laser activation of electron transport in the pale green mutant of Chlamydomonas reinhardii, the following kinetics are observed: 1) A rapid absorption decrease at 421 mmu (half-time < 2 x 10(-6) sec) recovering with a half-time of approximately 7 x 10(-3) sec. 2) Oxidation of cytochrome f at 554 mmu with a half-time of 1 x 10(-4) sec. 3) Oxidation of cytochrome of type b, at 432 and 564 mmu, with a half-time of approximately 6 x 10(-3) sec, following a 2 x 10(-3) sec lag.THE RESULTS ARE INTERPRETED ACCORDING TO A LINEAR ELECTRON TRANSPORT SEQUENCE: system I trap <-- cytochrome f <-- <-- cytochrome b with an additional molecule of cytochrome b in the cyclic photophosphorylation pathway. Experiments with uncouplers provide evidence for a site of photophosphorylation between cytochrome f and cytochrome b.Additional studies involve inhibitors of electron transport, the temperature dependence and quantum efficiency of cytochrome oxidation, and the effect of oxygen and pre-illumination on the laser-induced absorption changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号