首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The location and abundance of Campylobacter jejuni and Campylobacter lanienae in the intestines of beef cattle were investigated using real-time quantitative PCR in two studies. In an initial study, digesta and tissue samples were obtained along the digestive tract of two beef steers known to shed C. jejuni and C. lanienae (steers A and B). At the time of slaughter, steer B weighed 540 kg, compared to 600 kg for steer A, yet the intestine of steer B (40.5 m) was 36% longer than the intestine of steer A (26.1 m). In total, 323 digesta samples (20-cm intervals) and 998 tissue samples (3.3- to 6.7-cm intervals) were processed. Campylobacter DNA was detected in the digesta and in association with tissues throughout the small and large intestines of both animals. Although C. jejuni and C. lanienae DNA were detected in both animals, only steer A contained substantial quantities of C. jejuni DNA. In both digesta and tissues of steer A, C. jejuni was present in the duodenum and jejunum. Considerable quantities of C. jejuni DNA also were observed in the digesta obtained from the cecum and ascending colon, but minimal DNA was associated with tissues of these regions. In contrast, steer B contained substantial quantities of C. lanienae DNA, and DNA of this bacterium was limited to the large intestine (i.e., the cecum, proximal ascending colon, descending colon, and rectum); the majority of tissue-associated C. lanienae DNA was present in the cecum, descending colon, and rectum. In a second study, the location and abundance of C. jejuni and C. lanienae DNA were confirmed in the intestines of 20 arbitrarily selected beef cattle. DNA of C. jejuni and C. lanienae were detected in the digesta of 57% and 95% of the animals, respectively. C. jejuni associated with intestinal tissues was most abundant in the duodenum, ileum, and rectum. However, one animal contributed disproportionately to the abundance of C. jejuni DNA in the ileum and rectum. C. lanienae was most abundant in the large intestine, and the highest density of DNA of this bacterium was found in the cecum. Therefore, C. jejuni colonized the proximal small intestine of asymptomatic beef cattle, whereas C. lanienae primarily resided in the cecum, descending colon, and rectum. This information could be instrumental in developing efficacious strategies to manage the release of these bacteria from the gastrointestinal tracts of cattle.  相似文献   

2.
Campylobacter species are fastidious to culture, and the ability to directly quantify biomass in microbiologically complex substrates using real-time quantitative (RTQ) PCR may enhance our understanding of their biology and facilitate the development of efficacious mitigation strategies. This study reports the use of nested RTQ-PCR to directly quantify Campylobacter jejuni and Campylobacter lanienae in cattle feces. For C. jejuni, the single-copy mapA gene was selected. For C. lanienae, the three-copy 16S rRNA gene was targeted. RTQ-PCR primers were tested alone or they were nested with species-specific primers, and amplification products were detected using the intercalating dye SYBR Green. Nesting did not increase the specificity or sensitivity of C. jejuni quantification, and the limit of quantification was 19 to 25 genome copies ( approximately 3 x 10(3) CFU/g of feces). In contrast, nested RTQ-PCR was necessary to confer specificity on C. lanienae by targeting the 16S rRNA gene. The limit of quantification was 1.8 genome copies ( approximately 250 CFU/g of feces), and there was no discernible difference between the two C. lanienae secondary primer sets evaluated. Detection and quantification of C. jejuni in naturally infested cattle feces by RTQ-PCR were comparable to the results of culture-based methods. In contrast, culturing did not detect C. lanienae in 6 of 10 fecal samples positive for the bacterium and substantially underestimated cell densities relative to nested RTQ-PCR. The results of this study illustrate that RTQ-PCR can be used to directly quantify campylobacters, including very fastidious species, in a microbiologically and chemically complex substrate. Furthermore, targeting of a multicopy universal gene provided highly sensitive quantification of C. lanienae, but nested RTQ-PCR was necessary to confer specificity. This method will facilitate subsequent studies to elucidate the impact of this group of bacteria within the gastrointestinal tracts of livestock and studies of the factors that influence colonization success and shedding.  相似文献   

3.
Campylobacter species are fastidious to culture, and the ability to directly quantify biomass in microbiologically complex substrates using real-time quantitative (RTQ) PCR may enhance our understanding of their biology and facilitate the development of efficacious mitigation strategies. This study reports the use of nested RTQ-PCR to directly quantify Campylobacter jejuni and Campylobacter lanienae in cattle feces. For C. jejuni, the single-copy mapA gene was selected. For C. lanienae, the three-copy 16S rRNA gene was targeted. RTQ-PCR primers were tested alone or they were nested with species-specific primers, and amplification products were detected using the intercalating dye SYBR Green. Nesting did not increase the specificity or sensitivity of C. jejuni quantification, and the limit of quantification was 19 to 25 genome copies (≈3 × 103 CFU/g of feces). In contrast, nested RTQ-PCR was necessary to confer specificity on C. lanienae by targeting the 16S rRNA gene. The limit of quantification was 1.8 genome copies (≈250 CFU/g of feces), and there was no discernible difference between the two C. lanienae secondary primer sets evaluated. Detection and quantification of C. jejuni in naturally infested cattle feces by RTQ-PCR were comparable to the results of culture-based methods. In contrast, culturing did not detect C. lanienae in 6 of 10 fecal samples positive for the bacterium and substantially underestimated cell densities relative to nested RTQ-PCR. The results of this study illustrate that RTQ-PCR can be used to directly quantify campylobacters, including very fastidious species, in a microbiologically and chemically complex substrate. Furthermore, targeting of a multicopy universal gene provided highly sensitive quantification of C. lanienae, but nested RTQ-PCR was necessary to confer specificity. This method will facilitate subsequent studies to elucidate the impact of this group of bacteria within the gastrointestinal tracts of livestock and studies of the factors that influence colonization success and shedding.  相似文献   

4.
Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni   总被引:2,自引:0,他引:2  
Bacterial enumeration and histologic examination of organs and tissues of 8-day-old chicks 7 days after peroral inoculation with Campylobacter jejuni revealed that the organism colonized primarily the lower gastrointestinal tract. The principal sites of localization were the ceca, large intestine, and cloaca, where densely packed cells of C. jejuni were observed in mucus within crypts. Examination of C. jejuni-colonized crypts by transmission electron microscopy revealed that the campylobacters freely pervaded the lumina of crypts without attachment to crypt microvilli. Understanding the mechanism of colonization may lead to approaches that will reduce the incidence of C. jejuni carriage by poultry.  相似文献   

5.
Chickens on a broiler farm in southern England were found to be colonized with Campylobacter jejuni of a single serotype, Lior 1 Penner 4. The farm was the sole supplier of a local slaughterhouse associated with a campylobacter outbreak in 1984 caused by this serotype. The serotype persisted on the farm for at least 18 months after the outbreak; its prevalence in the human population served by the farm remained high until it disappeared from the farm in 1986. The possible sources and routes of transmission of C. jejuni to the broilers on the farm were investigated. The results showed that vertical transmission, feed, litter, small mammals, and environmental or airborne cross-contamination between sheds or successive crops could be excluded as persistent sources of C. jejuni. The predominant source of C. jejuni on the farm was shown to be the water supply. Direct microscopy and fluorescent antibody methods revealed presumptive campylobacters throughout the farm's water system. Campylobacter-free chickens raised in an animal house and given water from the farm supply became colonized with the serotype of C. jejuni endemic on the farm (Lior 1 Penner 4). An intervention program based on water chlorination, shed drinking system cleaning and disinfection, and withdrawal of furazolidone from feed reduced the proportion of birds colonized with campylobacter from 81 to 7% and was associated with a 1,000- to 10,000-fold reduction in campylobacters recoverable from the carcasses. Two months after the end of the intervention program colonization of the birds returned to high levels (84%), indicating that there was a temporal association between intervention and reduced colonization with C. jejuni. Investigations continue to establish the general applicability of these findings.  相似文献   

6.
Bacterial enumeration and histologic examination of organs and tissues of 8-day-old chicks 7 days after peroral inoculation with Campylobacter jejuni revealed that the organism colonized primarily the lower gastrointestinal tract. The principal sites of localization were the ceca, large intestine, and cloaca, where densely packed cells of C. jejuni were observed in mucus within crypts. Examination of C. jejuni-colonized crypts by transmission electron microscopy revealed that the campylobacters freely pervaded the lumina of crypts without attachment to crypt microvilli. Understanding the mechanism of colonization may lead to approaches that will reduce the incidence of C. jejuni carriage by poultry.  相似文献   

7.
Campylobacter jejuni is a leading bacterial cause of human gastrointestinal disease worldwide. While C. jejuni is a commensal organism in chickens, case-studies have demonstrated a link between infection with C. jejuni and the consumption of foods that have been cross-contaminated with raw or undercooked poultry. We hypothesized that vaccination of chickens with C. jejuni surface-exposed colonization proteins (SECPs) would reduce the ability of C. jejuni to colonize chickens, thereby reducing the contamination of poultry products at the retail level and potentially providing a safer food product for consumers. To test our hypothesis, we injected chickens with recombinant C. jejuni peptides from CadF, FlaA, FlpA, CmeC, and a CadF-FlaA-FlpA fusion protein. Seven days following challenge, chickens were necropsied and cecal contents were serially diluted and plated to determine the number of C. jejuni per gram of material. The sera from the chickens were also analyzed to determine the concentration and specificity of antibodies reactive against the C. jejuni SECPs. Vaccination of chickens with the CadF, FlaA, and FlpA peptides resulted in a reduction in the number of C. jejuni in the ceca compared to the non-vaccinated C. jejuni-challenged group. The greatest reduction in C. jejuni colonization was observed in chickens injected with the FlaA, FlpA, or CadF-FlaA-FlpA fusion proteins. Vaccination of chickens with different SECPs resulted in the production of C. jejuni-specific IgY antibodies. In summary, we show that the vaccination of poultry with individual C. jejuni SECPs or a combination of SECPs provides protection of chickens from C. jejuni colonization.  相似文献   

8.
A streptomycin resistant Campylobacter jejuni inoculated per os into two populations of Syrian hamsters (one endemically harboring C. jejuni, the other free of C. jejuni) established chronic colonization of the organism in both groups. Diet, steroid administration, age of hamsters or prior exposure to C. jejuni did not appreciably alter incidence of diarrhea or colonization of C. jejuni. The majority of hamsters sampled during the course of the experiment (1 to 22 weeks) shed streptomycin resistant C. jejuni in the feces. In four hamsters sampled at 14, 17, 19, and 22 weeks, post inoculation, streptomycin resistant C. jejuni were recovered in ileal, cecal, jejunal, duodenal and colonic contents (10(4) to 10(7) colony forming units/gram of intestinal content). The hamster appears to be a potentially useful model for the study of intestinal colonization of enteropathogenic C. jejuni. Hamsters shedding C. jejuni in their feces for extended periods of time should be considered a zoonotic threat to both pet owners and laboratory personnel.  相似文献   

9.
Campylobacter jejuni isolates possess multiple adhesive proteins termed adhesins, which promote the organism's attachment to epithelial cells. Based on the proposal that one or more adhesins are shared among C. jejuni isolates, we hypothesized that C. jejuni strains would compete for intestinal and cecal colonization in broiler chicks. To test this hypothesis, we selected two C. jejuni strains with unique SmaI pulsed-field gel electrophoresis macrorestriction profiles and generated one nalidixic acid-resistant strain (the F38011 Nalr strain) and one streptomycin-resistant strain (the 02-833L Strr strain). In vitro binding assays revealed that the C. jejuni F38011 Nalr and 02-833L Strr strains adhered to LMH chicken hepatocellular carcinoma epithelial cells and that neither strain influenced the binding potential of the other strain at low inoculation doses. However, an increase in the dose of the C. jejuni 02-833L Strr strain relative to that of the C. jejuni F38011 Nalr strain competitively inhibited the binding of the C. jejuni F38011 Nalr strain to LMH cells in a dose-dependent fashion. Similarly, the C. jejuni 02-833L Strr strain was found to significantly reduce the efficiency of intestinal and cecal colonization by the C. jejuni F38011 Nalr strain in broiler chickens. Based on the number of bacteria recovered from the ceca, the maximum number of bacteria that can colonize the digestive tracts of chickens may be limited by host constraints. Collectively, these data support the hypothesis that C. jejuni strains compete for colonization in chicks and suggest that it may be possible to design novel intervention strategies for reducing the level at which C. jejuni colonizes the cecum.  相似文献   

10.
Campylobacter jejuni is the leading cause of human food-borne bacterial gastroenteritis. The C. jejuni genome sequence predicts a branched electron transport chain capable of utilizing multiple electron acceptors. Mutants were constructed by disrupting the coding regions of the respiratory enzymes nitrate reductase (napA::Cm), nitrite reductase (nrfA::Cm), dimethyl sulfoxide, and trimethylamine N-oxide reductase (termed Cj0264::Cm) and the two terminal oxidases, a cyanide-insensitive oxidase (cydA::Cm) and cbb3-type oxidase (ccoN::Cm). Each strain was characterized for the loss of the associated enzymatic function in vitro. The strains were then inoculated into 1-week-old chicks, and the cecal contents were assayed for the presence of C. jejuni 2 weeks postinoculation. cydA::Cm and Cj0264c::Cm strains colonized as well as the wild type; napA::Cm and nrfA::Cm strains colonized at levels significantly lower than the wild type. The ccoN::Cm strain was unable to colonize the chicken; no colonies were recovered at the end of the experiment. While there appears to be a role for anaerobic respiration in host colonization, oxygen is the most important respiratory acceptor for C. jejuni in the chicken cecum.  相似文献   

11.
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.  相似文献   

12.
Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.  相似文献   

13.
Inactivation of luxS, encoding an AI-2 biosynthesis enzyme, in Campylobacter jejuni strain 81-176 significantly reduced colonization of the chick lower gastrointestinal tract, chemotaxis toward organic acids, and in vitro adherence to LMH chicken hepatoma cells. Thus, AI-2 production in C. jejuni contributes to host colonization and interactions with epithelial cells.  相似文献   

14.
AIMS: To identify campylobacters isolated from clinically healthy cattle at species level by a multiplex polymerase chain reaction (m-PCR). The heterogeneity among Campylobacter jejuni and Campylobacter coli isolates was also investigated by using a restriction fragment length polymorphism (RFLP) analysis of flagellin (flaA) gene. METHODS AND RESULTS: Samples of intestinal contents, gall bladders, liver and faeces were collected from a total number of 1154 healthy cattle. The samples were inoculated onto Preston enrichment broth and agar. Of 1154 samples, 301 (26.1%) were positive for Campylobacter spp. Using an m-PCR assay for species identification, 179 (59.5%) were positive with C. jejuni specific primers while 30 (10%) were positive with C. coli specific primers. None of the liver samples examined was positive for C. jejuni or C. coli by mPCR. All the isolates identified as C. jejuni and C. coli were successfully subtyped by flaA typing. Of the 209 isolates tested, 28 different flaA types were found. Twenty-three flaA types were identified among 179 C. jejuni isolates and the remaining five from C. coli isolates. CONCLUSIONS: Although the overall results suggest that the degree of heterogeneity among the flaA genes of thermophilic Campylobacter strains isolated from healthy cattle is relatively high, they should be treated cautiously as the number of band types for C. coli was low and band type 8 in C. jejuni was represented by a high percentage (%58). SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of the present study suggest that healthy cattle can play role in the contamination of environment and human food chain by Campylobacter spp.  相似文献   

15.
16.
Campylobacter jejuni is a leading cause of human foodborne gastroenteritis worldwide. The interactions between this pathogen and the intestinal microbiome within a host are of interest as endogenous intestinal microbiota mediates a form of resistance to the pathogen. This resistance, termed colonization resistance, is the ability of commensal microbiota to prevent colonization by exogenous pathogens or opportunistic commensals. Although mice normally demonstrate colonization resistance to C. jejuni, we found that mice treated with ampicillin are colonized by C. jejuni, with recovery of Campylobacter from the colon, mesenteric lymph nodes, and spleen. Furthermore, there was a significant reduction in recovery of C. jejuni from ampicillin-treated mice inoculated with a C. jejuni virulence mutant (ΔflgL strain) compared to recovery of mice inoculated with the C. jejuni wild-type strain or the C. jejuni complemented isolate (ΔflgL/flgL). Comparative analysis of the microbiota from nontreated and ampicillin-treated CBA/J mice led to the identification of a lactic acid-fermenting isolate of Enterococcus faecalis that prevented C. jejuni growth in vitro and limited C. jejuni colonization of mice. Next-generation sequencing of DNA from fecal pellets that were collected from ampicillin-treated CBA/J mice revealed a significant decrease in diversity of operational taxonomic units (OTUs) compared to that in control (nontreated) mice. Taken together, we have demonstrated that treatment of mice with ampicillin alters the intestinal microbiota and permits C. jejuni colonization. These findings provide valuable insights for researchers using mice to investigate C. jejuni colonization factors, virulence determinants, or the mechanistic basis of probiotics.  相似文献   

17.
An attempt was made to elucidate in Campylobacter spp. some of the physiologic characteristics that are reflected in the kinetics of CO2 formation from four 14C-labeled substrates. Campylobacter jejuni and C. coli were grown in a biphasic medium, and highly motile spiral cells were harvested at 12 h. Of the media evaluated for use in the metabolic tests, minimal essential medium without glutamine, diluted with an equal volume of potassium sodium phosphate buffer (pH 7.2), provided the greatest stability and least competition with the substrates to be tested. The cells were incubated with 0.02 M glutamate, glutamine, alpha-ketoglutarate, or formate, or with concentrations of these substrates ranging from 0.0032 to 0.125 M. All four substrates were metabolized very rapidly by both species. A feature of many of these reactions, particularly obvious with alpha-ketoglutarate, was an immediate burst of CO2 production followed by CO2 evolution at a more moderate rate. These diphasic kinetics of substrate utilization were not seen in comparable experiments with Escherichia coli grown and tested under identical conditions. With C. jejuni, CO2 production from formate proceeded rapidly for the entire period of incubation. The rate of metabolism of glutamate, glutamine, and alpha-ketoglutarate by both species was greatly enhanced by increased substrate concentration. The approach to the study of the metabolism of campylobacters here described may be useful in detecting subtle changes in the physiology of cells as they are maintained past their logarithmic growth phase.  相似文献   

18.
Using laboratory challenge experiments, we examined whether Campylobacter-specific maternal antibody (MAB) plays a protective role in young chickens, which are usually free of Campylobacter under natural production conditions. Kinetics of C. jejuni colonization were compared by infecting 3-day-old broiler chicks, which were naturally positive for Campylobacter-specific MAB, and 21-day-old broilers, which were negative for Campylobacter-specific MAB. The onset of colonization occurred much sooner in birds challenged at the age of 21 days than it did in the birds inoculated at 3 days of age, which suggested a possible involvement of specific MAB in the delay of colonization. To further examine this possibility, specific-pathogen-free layer chickens were raised under laboratory conditions with or without Campylobacter infection, and their 3-day-old progenies with (MAB+) or without (MAB) Campylobacter-specific MAB were orally challenged with C. jejuni. Significant decreases in the percentage of colonized chickens were observed in the MAB+ group during the first week compared with the MAB group. These results indicate that Campylobacter-specific MAB plays a partial role in protecting young chickens against colonization by C. jejuni. Presence of MAB in young chickens did not seem to affect the development of systemic immune response following infection with C. jejuni. However, active immune responses to Campylobacter occurred earlier and more strongly in birds infected at 21 days of age than those infected at 3 days of age. Clearance of Campylobacter infection was also observed in chickens infected at 21 days of age. Taken together, these findings (i) indicate that anti-Campylobacter MAB contributes to the lack of Campylobacter infection in young broiler chickens in natural environments and (ii) provide further evidence supporting the feasibility of development of immunization-based approaches for control of Campylobacter infection in poultry.  相似文献   

19.
A total of 525 specimens from 100 slaughter beef cattle were examined for the presence of Campylobacter jejuni and Campylobacter coli by direct plating and enrichment techniques. Isolates were identified by cultural, biochemical, antibiotic sensitivity, and immunofluorescence tests and further characterized with the aid of recently developed biotyping and serotyping methods. Fifty animals were positive for C. jejuni; only one was positive for C. coli. The distribution pattern of C. jejuni-positive animals, in decreasing order, was steers (55%), bulls (40%), heifers (40%), and cows (22%). Significantly higher isolation rates were obtained from the gall bladders (33%), large intestines (35%), and small intestines (31%) than from the livers (12%) or the lymph nodes (1.4%). C. jejuni isolation by the enrichment technique was 40.2% more frequent than by direct plating; 24-h enrichment resulted in 24% more isolations than 48-h enrichment. Eighty-four of 105 C. jejuni cultures were typable serologically and represented 13 serogroups. Biotype I accounted for 71% of biotyped cultures. Serogroup 7 biotype I was the most commonly encountered (24%) isolate. About one in three positive animals had C. jejuni strains representing more than one serogroup. C. jejuni serogroups encountered in slaughter cattle were similar to those commonly isolated from human sources.  相似文献   

20.
Campylobacter jejuni colonizes the intestines of domestic and wild animals and is a common cause of human diarrheal disease. We identified a two-component regulatory system, designated the RacR-RacS (reduced ability to colonize) system, that is involved in a temperature-dependent signalling pathway. A mutation of the response regulator gene racR reduced the organism's ability to colonize the chicken intestinal tract and resulted in temperature-dependent changes in its protein profile and growth characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号