首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nirS nitrite reductase genes were studied in two strains (strains 27 and 28) isolated from two denitrifying reactors and characterized as Thauera according to their 16S rRNA gene sequences. Strain 28 contains a single nirS sequence, which is related to the nirS of Thauera mechernichensis, and strain 27 contains two nirS sequences; one is similar to the nirS sequence from Thauera mechernichensis (gene 2), but the second one (gene 8) is from a separate clade with nirS from Pseudomonas stutzeri, Azoarcus species, Alcaligenes faecalis, and other Thauera species. Both genes were expressed, but gene 8 was constitutively expressed while gene 2 was positively regulated by nitrate.  相似文献   

2.
"Candidatus Accumulibacter phosphatis" is considered a polyphosphate-accumulating organism (PAO) though it has not been isolated yet. To reveal the denitrification ability of this organism, we first concentrated this organism by flow cytometric sorting following fluorescence in situ hybridization (FISH) using specific probes for this organism. The purity of the target cells was about 97% of total cell count in the sorted sample. The PCR amplification of the nitrite reductase genes (nirK and nirS) from unsorted and sorted cells was performed. Although nirK and nirS were amplified from unsorted cells, only nirS was detected from sorted cells, indicating that "Ca. Accumulibacter phosphatis" has nirS. Furthermore, nirS fragments were cloned from unsorted (Ba clone library) and sorted (Bd clone library) cells and classified by restriction fragment length polymorphism analysis. The most dominant clone in clone library Ba, which represented 62% of the total number of clones, was not found in clone library Bd. In contrast, the most dominant clone in clone library Bd, which represented 59% of the total number of clones, represented only 2% of the total number of clones in clone library Ba, indicating that this clone could be that of "Ca. Accumulibacter phosphatis." The sequence of this nirS clone exhibited less than 90% similarity to the sequences of known denitrifying bacteria in the database. The recovery of the nirS genes makes it likely that "Ca. Accumulibacter phosphatis" behaves as a denitrifying PAO capable of utilizing nitrite instead of oxygen as an electron acceptor for phosphorus uptake.  相似文献   

3.
Chemical profiles of the Black Sea suboxic zone show a distribution of nitrogen species which is traditionally associated with denitrification, i.e. a secondary nitrite maximum associated with nitrate depletion and a N(2) gas peak. To better understand the distribution and diversity of the denitrifier community in the Black Sea suboxic zone, we combined a cultivation approach with cloning and sequencing of PCR-amplified nitrite reductase (nirS and nirK) genes. The Black Sea suboxic zone appears to harbour a homogeneous community of denitrifiers. For nirK, over 94% of the sequences fell into only three distinct phylogenetic clusters, and for nirS, a single closely related sequence type accounted for 91% of the sequences retrieved. Both nirS and nirK genes showed a dramatic shift in community composition at the bottom of the suboxic zone, but overall, nirK-based community composition showed much greater variation across depths compared with the highly uniform distribution of nirS sequences throughout the suboxic zone. The dominant nirK and nirS sequences differed at the amino acid level by at least 17% and 8%, respectively, from their nearest database matches. Denitrifying isolates recovered from the suboxic zone shared 97% 16S rRNA gene sequence similarity with Marinobacter maritimus. Analysis of the recently discovered nirS gene from the anammox bacterium Candidatus'Kuenenia stuttgartiensis' revealed that mismatches with commonly used primers may have prevented the previous detection of this divergent sequence.  相似文献   

4.
Denitrification by Alcaligenes eutrophus is plasmid dependent.   总被引:9,自引:5,他引:4       下载免费PDF全文
Curing of the hydrogenase-specifying megaplasmid pHG indigenous to strains of the facultative lithoautotrophic bacterium Alcaligenes eutrophus was correlated with a loss of denitrifying ability (Nitd). The retransfer of plasmid pHG1 reconstituted the Nitd phenotype. Plasmid-free mutants were still capable of converting some nitrate to nitrite, but they did not metabolize nitrite under anaerobic conditions.  相似文献   

5.
Peak emissions of NO and N(inf2)O are often observed after wetting of soil. The reactions to sudden changes in the aeration of cultures of nitrifying and denitrifying bacteria with respect to NO and N(inf2)O emissions were compared to obtain more information about the microbiological aspects of peak emissions. In continuous culture, the nitrifier Nitrosomonas europaea and the denitrifiers Alcaligenes eutrophus and Pseudomonas stutzeri were cultured at different levels of aeration (80 to 0% air saturation) and subjected to changes in aeration. The relative production of NO and N(inf2)O by N. europaea, as a percentage of the ammonium conversion, increased from 0.87 and 0.17%, respectively, at 80% air saturation to 2.32 and 0.78%, respectively, at 1% air saturation. At 0% air saturation, ammonium oxidation and N(inf2)O production ceased but NO production was enhanced. Coculturing of N. europaea with the nitrite oxidizer Nitrobacter winogradskyi strongly reduced the relative levels of NO and N(inf2)O production, probably as an effect of the lowered nitrite concentration. After lowering the aeration, N. europaea produced large short-lasting peaks of NO and N(inf2)O emissions in the presence but not in the absence of nitrite. A. eutrophus and P. stutzeri began to denitrify below 1% air saturation, with the former accumulating nitrite and N(inf2)O and the latter reducing nitrate almost completely to N(inf2). Transition of A. eutrophus and P. stutzeri from 80 to 0% air saturation resulted in transient maxima of denitrification intermediates. Such transient maxima were not observed after transition from 1 to 0%. Reduction of nitrate by A. eutrophus continued 48 h after the onset of the aeration, whereas N(inf2)O emission by P. stutzeri increased for only a short period. It was concluded that only in the presence of nitrite are nitrifiers able to dominate the NO and N(inf2)O emissions of soils shortly after a rainfall event.  相似文献   

6.
7.
Journal of Industrial Microbiology & Biotechnology - Through our previous study, we found an up-regulation in the expression of nitrite reductase (nirS) in the isothiazolone-resistant strain of...  相似文献   

8.
The major sites of water column denitrification in the ocean are oxygen minimum zones (OMZ), such as one in the eastern South Pacific (ESP). To understand the structure of denitrifying communities in the OMZ off Chile, denitrifier communities at two sites in the Chilean OMZ (Antofagasta and Iquique) and at different water depths were explored by terminal restriction fragment length polymorphism analysis and cloning of polymerase chain reaction (PCR)-amplified nirS genes. NirS is a functional marker gene for denitrification encoding cytochrome cd1-containing nitrite reductase, which catalyses the reduction of nitrite to nitric oxide, the key step in denitrification. Major differences were found between communities from the two geographic locations. Shifts in community structure occurred along a biogeochemical gradient at Antofagasta. Canonical correspondence analysis indicated that O2, NO3-, NO2- and depth were important environmental factors governing these communities along the biogeochemical gradient in the water column. Phylogenetic analysis grouped the majority of clones from the ESP in distinct clusters of genes from presumably novel and yet uncultivated denitrifers. These nirS clusters were distantly related to those found in the water column of the Arabian Sea but the phylogenetic distance was even higher compared with environmental sequences from marine sediments or any other habitat. This finding suggests similar environmental conditions trigger the development of denitrifiers with related nirS genotypes despite large geographic distances.  相似文献   

9.
The genetic heterogeneity of nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in forested upland and marsh soil was investigated using molecular methods. nirK gene fragments could be amplified from both soils, whereas nirS gene fragments could be amplified only from the marsh soil. PCR products were cloned and screened by restriction fragment length polymorphism (RFLP), and representative fragments were sequenced. The diversity of nirK clones was lower than the diversity of nirS clones. Among the 54 distinct nirK RFLP patterns identified in the two soils, only one pattern was found in both soils and in each soil two dominant groups comprised >35% of all clones. No dominance and few redundant patterns were seen among the nirS clones. Phylogenetic analysis of deduced amino acids grouped the nirK sequences into five major clusters, with one cluster encompassing most marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall, the data indicated that the denitrifying communities in the two soils have many members and that the soils have a high richness of different nir genes, especially of the nirS gene, most of which have not yet been found in cultivated denitrifiers.  相似文献   

10.
We used real-time PCR to quantify the denitrifying nitrite reductase gene (nirS), a functional gene of biogeochemical significance. The assay was tested in vitro and applied to environmental samples. The primer-probe set selected was specific for nirS sequences that corresponded approximately to the Pseudomonas stutzeri species. The assay was linear from 1 to 10(6) gene copies (r2 = 0.999). Variability at low gene concentrations did not allow detection of twofold differences in gene copy number at less than 100 copies. DNA spiking and cell-addition experiments gave predicted results, suggesting that this assay provides an accurate measure of P. stutzeri nirS abundance in environmental samples. Although P. stutzeri abundance was high in lake sediment and groundwater samples, we detected low or no abundance of this species in marine sediment samples from Puget Sound (Wash.) and from the Washington ocean margin. These results suggest that P. stutzeri may not be a dominant marine denitrifier.  相似文献   

11.
Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzeri and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometry-assisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats.  相似文献   

12.
Genetic heterogeneity of denitrifying bacteria in sediment samples from Puget Sound and two sites on the Washington continental margin was studied by PCR approaches amplifying nirK and nirS genes. These structurally different but functionally equivalent single-copy genes coding for nitrite reductases, a key enzyme of the denitrification process, were used as a molecular marker for denitrifying bacteria. nirS sequences could be amplified from samples of both sampling sites, whereas nirK sequences were detected only in samples from the Washington margin. To assess the underlying nir gene structure, PCR products of both genes were cloned and screened by restriction fragment length polymorphism (RFLP). Rarefraction analysis revealed a high level of diversity especially for nirS clones from Puget Sound and a slightly lower level of diversity for nirK and nirS clones from the Washington margin. One group dominated within nirK clones, but no dominance and only a few redundant clones were seen between sediment samples for nirS clones in both habitats. Hybridization and sequencing confirmed that all but one of the 228 putative nirS clones were nirS with levels of nucleotide identities as low as 45.3%. Phylogenetic analysis grouped nirS clones into three distinct subclusters within the nirS gene tree which corresponded to the two habitats from which they were obtained. These sequences had little relationship to any strain with known nirS sequences or to isolates (mostly close relatives of Pseudomonas stutzeri) from the Washington margin sediment samples. nirK clones were more closely related to each other than were the nirS clones, with 78.6% and higher nucleotide identities; clones showing only weak hybridization signals were not related to known nirK sequences. All nirK clones were also grouped into a distinct cluster which could not be placed with any strain with known nirK sequences. These findings show a very high diversity of nir sequences within small samples and that these novel nir clusters, some very divergent from known sequences, are not known in cultivated denitrifiers.  相似文献   

13.
Terrestrial sites contaminated with 2,4,6-trinitrotoluene (TNT) are a widespread and persistent problem and often contain non-vegetated areas with TNT concentrations well in excess of 1000 mg kg(-1). In this study, we examined the effect of TNT on denitrification activity in field soils, and compared the sensitivity of denitrifying enzymes to TNT. DNA probes assessed the prevalence of nirS, nirK and nosZ (encoding cd(1) or copper nitrite reductase and nitrous oxide reductase, respectively), denitrifying genotypes in the culturable and total microbial community. The nitrate (NaR), nitrite (NiR) and nitrous oxide (N(2)OR) reductase activities in field soil and in isolates were assessed by gas chromatography. The relative occurrence of the nirK, nirS or nosZ genotypes increased in the cultured community and in total uncultured community DNA as nitroaromatic concentrations increased. However, denitrifying activity decreased in response to increasing TNT concentrations, with an IC(50) for NaR+NiR+nitric oxide reductase (NOR) of 400 mg TNT kg(-1) soil and for N(2)OR of 26 mg TNT kg(-1) soil. The denitrifying activity of four soil isolates also decreased in response to TNT, with N(2)OR activity being three times more sensitive to TNT than NaR+NiR+NOR activity. Interestingly, there were 118 times more nirK isolates than nirS isolates in uncontaminated soil but only 1.5 times more in soil containing 17400 mg kg(-1) TNT. The results from this study indicated that TNT reduced denitrification activity in field soils, and N(2)OR was much more sensitive to TNT than NaR+NiR+NOR.  相似文献   

14.
15.
邓超  王友绍 《生态科学》2011,30(3):321-326
研究首次于珠江口沉积物中分离出多株好氧反硝化细菌,从中筛选出一株反硝化性能最强的菌株A14-1。综合其生理生化及分子生物学鉴定的结果确定此菌株为红球菌属Rhodococcus aetherivorar。此菌株可在48 h内将培养基中的硝酸盐含量从157.91mg·L-1降低至32.07mg·L-1,反硝化效率高达26.20 mg·L-1·h-1,且不会产生亚硝酸盐的明显积累。以细菌总基因组DNA为模板成功扩增出亚硝酸还原酶基因nirS,说明亚硝酸还原酶可能参与了此菌株的好氧反硝化过程,将亚硝酸盐进一步还原,从而不会造成水体亚硝酸盐的积累。菌株A14-1在珠江口多个站点均有分布,环境适应能力强,且不会对环境造成危害,因此有望应用于污水的生物脱氮处理中。  相似文献   

16.
External carbon sources can enhance denitrification rates and thus improve nitrogen removal in wastewater treatment plants. The effects of adding methanol and ethanol on the genetic and metabolic diversity of denitrifying communities in activated sludge were compared using a pilot-scale plant with two parallel lines. A full-scale plant receiving the same municipal wastewater, but without external carbon source addition, was the reference. Metabolic profiles obtained from potential denitrification rates with 10 electron donors showed that the denitrifying communities altered their preferences for certain compounds after supplementation with methanol or ethanol and that methanol had the greater impact. Clone libraries of nirK and nirS genes, encoding the two different nitrite reductases in denitrifiers, revealed that methanol also increased the diversity of denitrifiers of the nirS type, which indicates that denitrifiers favored by methanol were on the rise in the community. This suggests that there might be a niche differentiation between nirS and nirK genotypes during activated sludge processes. The composition of nirS genotypes also varied greatly among all samples, whereas the nirK communities were more stable. The latter was confirmed by denaturing gradient gel electrophoresis of nirK communities on all sampling occasions. Our results support earlier hypotheses that the compositions of denitrifier communities change during predenitrification processes when external carbon sources are added, although no severe effect could be observed from an operational point of view.  相似文献   

17.
A functional gene microarray was used to investigate denitrifier community composition and nitrite reductase (nirS) gene expression in sediments along the estuarine gradient in Chesapeake Bay, USA. The nirS oligonucleotide probe set was designed to represent a sequence database containing 539 Chesapeake Bay clones, as well as sequences from many other environments. Greatest nirS diversity was detected at the freshwater station at the head of the bay and least diversity at the higher salinity station near the mouth of the Bay. The most common OTUs from the sequence database were detected on the array with high signal strength in most samples. One of the most abundant OTUs, CB2-S-138, was identified as dominant at the mid-bay site by both microarray and quantitative PCR assays, but it comprised a much smaller fraction of the assemblage in the north and south bay samples. cDNA (transcribed from total RNA extracts) targets were hybridized to the same array to compare the profiles of community composition at the DNA (relative abundance) and mRNA (gene expression) levels. Only the three dominant denitrifying groups (in terms of relative strength of DNA hybridization signal) were detected at the mRNA level. These results suggest that the most actively denitrifying groups are responsible for most nirS expression as well.  相似文献   

18.
Three c-type cytochromes, NirM, NirC, and NirN, are encoded in the nirSMCFDLGHJEN gene cluster for cytochrome cd(1)-type nitrite reductase (NIR) of Pseudomonas aeruginosa. nirS is the structural gene for NIR. NirM (cytochrome c(551)) is reported to be a physiological electron donor for nitrite reductase. The respective functions of NirC and NirN have remained unclear. In this study, we produced recombinant NirC and NirN in P. aeruginosa, and purified them from the periplasmic fraction. N-terminal amino acid sequences of the purified proteins showed that the N-terminal 31 and 18 residues of NirC and NirN precursors were cleaved, respectively, indicating that cleaved peptides act as signals for membrane translocation. In addition, the ability of NirC for electron donation to nitrite reductase was investigated. NirC, as well as NirM, was able to mediate the electron donation from the membrane electron pathway to NIR, suggesting that the structural gene for NIR is followed by the genes for two electron donors for NIR.  相似文献   

19.
Marine sediments account for up to 66% of the loss of nitrogen load to coastal areas. Sedimentary denitrification is the main sink for fixed nitrogen in the global nitrogen budget, and thus it is important to understand the structure and composition of denitrifying communities. To understand the structure and composition of denitrifying communities, the diversity of nitrite reductase (nirS) genes from sediments along the Gulf of Mexico was examined using a PCR-based cloning approach. Sediments were collected at three different depths (0-0.5, 4-5 and 19-21 cm). Geochemical analysis revealed decreasing nitrate and oxygen concentrations with increasing sediment depth. This trend coincided with the decrease in diversity of denitrifying bacteria. LIBSHUFF analysis indicated that the clone library in the shallowest sediment (depth, 0-0.5 cm) was significantly different from that in the deepest sediment (depth, 19-21 cm), and that the deeper sediments (depths of 4-5 and 19-21 cm) were significantly similar. Community structural shifts were evident between the shallowest (oxic zone) and deepest (anoxic zone) sediments. Community changes within the deepest sediments were more subtle, with the presence of different nirS clone sequences gradually becoming dominant or, alternatively, decreasing with depth. The changes in community structure at this depth are possibly driven by nutrient availability, with lower quality sources of carbon and energy leading to the disappearance of nirS sequences common in the top layer. The majority of recovered nirS sequences were phylogenetically divergent relative to known denitrifying bacteria in the database.  相似文献   

20.
Two genes, norB and norZ, encoding two independent nitric oxide reductases have been identified in Alcaligenes eutrophus H16. norB and norZ predict polypeptides of 84.5 kDa with amino acid sequence identity of 90%. While norB resides on the megaplasmid pHG1, the norZ gene is located on a chromosomal DNA fragment. Amino acid sequence analysis suggests that norB and norZ encode integral membrane proteins composed of 14 membrane-spanning helices. The region encompassing helices 3 to 14 shows similarity to the NorB subunit of common bacterial nitric oxide reductases, including the positions of six strictly conserved histidine residues. Unlike the Nor enzymes characterized so far from denitrifying bacteria, NorB and NorZ of A. eutrophus contain an amino-terminal extension which may form two additional helices connected by a hydrophilic loop of 203 amino acids. The presence of a NorB/NorZ-like protein was predicted from the genome sequence of the cyanobacterium Synechocystis sp. strain PCC6803. While the common NorB of denitrifying bacteria is associated with a second cytochrome c subunit, encoded by the neighboring gene norC, the nor loci of A. eutrophus and Synechocystis lack adjacent norC homologs. The physiological roles of norB and norZ in A. eutrophus were investigated with mutants disrupted in the two genes. Mutants bearing single-site deletions in norB or norZ were affected neither in aerobic nor in anaerobic growth with nitrate or nitrite as the terminal electron acceptor. Inactivation of both norB and norZ was lethal to the cells under anaerobic growth conditions. Anaerobic growth was restored in the double mutant by introducing either norB or norZ on a broad-host-range plasmid. These results show that the norB and norZ gene products are isofunctional and instrumental in denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号