首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three mammalian Ras isoforms: HRas, NRas and KRas have been widely implicated in the control of cell proliferation, survival, motility and transformation. Although nearly identical with respect to their catalytic and effector-binding properties, HRas, NRas and KRas lead to different biological outcomes in development, cell growth and cancer. This functional distinction is believed to result at least in part from the differential membrane compartmentalization of Ras isoforms. The different distribution of Ras proteins in cellular membranes dictates unique spatio-temporal patterns of activation of effector pathways. This perspective focuses on the factors that control membrane compartmentalization of Ras with an emphasis on a recently discovered novel posttranslational modification of Ras—ubiquitination. The properties of Ras ubiquitination, its contribution to the regulation of Ras intracellular trafficking and finally the influence of Ras ubiquitination on its signaling potential are discussed.  相似文献   

2.
《Biophysical journal》2022,121(19):3616-3629
HRas, KRas, and NRas are GTPases with a common set of effectors that control many cell-signaling pathways, including proliferation through Raf kinase. Their G-domains are nearly identical in sequence, with a few isoform-specific residues that have an effect on dynamics and biochemical properties. Here, we use accelerated molecular dynamics (aMD) simulations consistent with solution x-ray scattering experiments to elucidate mechanisms through which isoform-specific residues associated with each Ras isoform affects functionally important regions connected to the active site. HRas-specific residues cluster in loop 8 to stabilize the nucleotide-binding pocket, while NRas-specific residues on helix 3 directly affect the conformations of switch I and switch II. KRas, the most globally flexible of the isoforms, shows greatest fluctuations in the switch regions enhanced by a KRas-specific residue in loop 7 and a highly dynamic loop 8 region. The analysis of isoform-specific residue effects on Ras proteins is supported by NMR experiments and is consistent with previously published biochemical data.  相似文献   

3.
Jin T  Ding Q  Huang H  Xu D  Jiang Y  Zhou B  Li Z  Jiang X  He J  Liu W  Zhang Y  Pan Y  Wang Z  Thomas WG  Chen Y 《Cell research》2012,22(4):661-676
Ras plays a pivotal role in many cellular activities, and its subcellular compartmentalization provides spatial and temporal selectivity. Here we report a mode of spatial regulation of Ras signaling in the Golgi apparatus by two highly homologous proteins PAQR10 and PAQR11 of the progestin and AdipoQ receptors family. PAQR10 and PAQR11 are exclusively localized in the Golgi apparatus. Overexpression of PAQR10/PAQR11 stimulates basal and EGF-induced ERK phosphorylation and increases the expression of ERK target genes in a dose-dependent manner. Overexpression of PAQR10/PAQR11 markedly elevates Golgi localization of HRas, NRas and KRas4A, but not KRas4B. PAQR10 and PAQR11 can also interact with HRas, NRas and KRas4A, but not KRas4B. The increased Ras protein at the Golgi apparatus by overexpression of PAQR10/PAQR11 is in an active state. Consistently, knockdown of PAQR10 and PAQR11 reduces EGF-stimulated ERK phosphorylation and Ras activation at the Golgi apparatus. Intriguingly, PAQR10 and PAQR11 are able to interact with RasGRP1, a guanine nucleotide exchange protein of Ras, and increase Golgi localization of RasGRP1. The C1 domain of RasGRP1 is both necessary and sufficient for the interaction of RasGRP1 with PAQR10/PAQR11. The simulation of ERK phosphorylation by overexpressed PAQR10/PAQR11 is abrogated by downregulation of RasGRP1. Furthermore, differentiation of PC12 cells is significantly enhanced by overexpression of PAQR10/PAQR11. Collectively, this study uncovers a new paradigm of spatial regulation of Ras signaling in the Golgi apparatus by PAQR10 and PAQR11.  相似文献   

4.
Ras proteins are oncoproteins which play a pivotal role in cellular signaling pathways. All Ras proteins' signaling strongly depends on their correct localization in the cell membrane. Over 30% of cancers are driven by mutant Ras proteins, and KRas4B is the Ras isoform most frequently mutated. C6-ceramide has been shown to inhibit the growth activity of KRas4B mutated cells. However, the mechanism underlying this inhibition remains elusive. Here, we established a heterogeneous model biomembrane containing C6-ceramide. C6-ceramide incorporation does not disrupt the lipid membrane. Addition of KRas4B leads to drastic changes in the lateral membrane organization of the membrane, however. In contrast to the partitioning behavior in other membranes, KRas4B forms small, monodisperse nanoclusters dispersed in a fluid-like environment, in all likelihood induced by some kind of lipid sorting mechanism. Fluorescence cross-correlation data indicate no direct interaction between C6-ceramide and KRas4B, suggesting that KRas4B essentially recruits other lipids. A FRET-based binding assay reveals that the stability of KRas4B proteins inserted into the membrane containing C6-ceramide is reduced. Based on the combined results obtained, we postulate a molecular mechanism for the inhibition of KRas4B mutated cells' activity through C6-ceramide.  相似文献   

5.
目的:传统Ras家族由Kras,Hras和Nras基因组成,这类基因的点突变经常在人类肿瘤中发现,突变热点位于12,13,61位密码子。ERas基因是2003年在鼠胚胎干(ES)细胞中发现的,其cDNA编码的蛋白与Kras,Hras和Nras分别有46%,43%和47%的相似性,故属于新的Ras家族成员,近几年发现ERas基因的表达与胃癌密切相关,而传统Ras基因在胃癌细胞中的表达及突变情况系统报道较少,本文旨在研究传统Ras基因Kras,Hras,Nras及其家族新成员ERas基因在胃癌细胞中的表达和突变情况。方法:选用7株不同来源不同分化程度的胃癌细胞系,利用RT—PCR及real-timePCR检测Ras基因在这些胃癌细胞系中的表达,并通过测序对传统Ras基因突变热点12,13,61位密码子及ERas基因全长进行突变分析。结果:QRas基因在这些胃癌细胞系中均有不同程度的表达,其中Hras和Nms基因在各株细胞中表达水平均一,而Kras和ERas基因则呈差异性表达;②在这些胃癌细胞中传统Ras基因突变热点12,13,61位密码子不存在突变,ERas基因全长亦未检测到突变.③发现Kras基因一新的剪接型,特点为第一、三外显子直接拼接,缺失第二外显子,命名为Kras△E2。结论:与在其他肿瘤中不同,传统Ras基因在胃癌细胞中不存在突变热点,家族新成员ERas基因全长亦无突变,在国际上首次报道新剪接型Kras△E2,从而得出创新性结论:Ras基因家族在胃癌细胞中并不是通过热点突变导致持续活化而致癌,而可能是通过ERas基因表达量的调节或形成新的剪接型KrasAE2而致癌。另外,Kras基因是一被受国际关注的肿瘤基因,新剪接型的发现可能会对Kras基因致癌机制产生新的认识,意义重大。  相似文献   

6.
Ras proteins are small guanosine triphosphatases involved in the regulation of important cellular functions such as proliferation, differentiation, and apoptosis. Understanding the intracellular trafficking of Ras proteins is crucial to identify novel Ras signaling platforms. In this study, we report that epidermal growth factor triggers Kirsten Ras (KRas) translocation onto endosomal membranes (independently of calmodulin and protein kinase C phosphorylation) through a clathrin-dependent pathway. From early endosomes, KRas but not Harvey Ras or neuroblastoma Ras is sorted and transported to late endosomes (LEs) and lysosomes. Using yellow fluorescent protein–Raf1 and the Raichu-KRas probe, we identified for the first time in vivo–active KRas on Rab7 LEs, eliciting a signal output through Raf1. On these LEs, we also identified the p14–MP1 scaffolding complex and activated extracellular signal-regulated kinase 1/2. Abrogation of lysosomal function leads to a sustained late endosomal mitogen-activated protein kinase signal output. Altogether, this study reveals novel aspects about KRas intracellular trafficking and signaling, shedding new light on the mechanisms controlling Ras regulation in the cell.  相似文献   

7.
Calmodulin (CaM) binds only oncogenic KRas, but not HRas or NRas, and thus contributes only to KRAS-driven cancers. How CaM interacts with KRas and how it boosts KRAS cancers are among the most coveted aims in cancer biology. Here we address this question, and further ask: Are there proteins that can substitute for CaM in HRAS- and NRAS-driven cancers? Can scaffolding protein IQGAP1 be one? Data suggest that formation of a CaM–KRas–PI3Kα ternary complex promotes full PI3Kα activation, and thereby potent PI3Kα/Akt/mTOR proliferative signaling. CaM binds PI3Kα at the cSH2 and nSH2 domains of its regulatory p85 subunit; the WW domain of IQGAP1 binds cSH2. This raises the question whether IQGAP1, together with an oncogenic Ras isoform, can partially activate PI3Kα. Activated, membrane-bound PI3Kα generates PIP3. CaM shuttles Akt to the plasma membrane; CaM's release and concomitant phosphoinositide binding stimulates Akt activation. Notably, IQGAP1 directly interacts with, and helps juxtapose, PI3Kα and Akt as well as mTOR. Our mechanistic review aims to illuminate CaM's actions, and help decipher how oncogenic Ras isoforms – not only KRas4B – can activate the PI3Kα/Akt/mTOR pathway at the membrane and innovate drug discovery, including blocking the PI3Kα–IQGAP1 interaction in HRAS- and NRAS-driven cancers.  相似文献   

8.
TC21 causes transformation by Raf-independent signaling pathways.   总被引:2,自引:1,他引:1       下载免费PDF全文
Although the Ras-related protein TC21/R-Ras2 has only 55% amino acid identity with Ras proteins, mutated forms of TC21 exhibit the same potent transforming activity as constitutively activated forms of Ras. Therefore, like Ras, TC21 may activate signaling pathways that control normal cell growth and differentiation. To address this possibility, we determined if regulators and effectors of Ras are also important for controlling TC21 activity. First, we determined that Ras guanine nucleotide exchange factors (SOS1 and RasGRF/CDC25) synergistically enhanced wild-type TC21 activity in vivo and that Ras GTPase-activating proteins (GAPs; p120-GAP and NF1-GAP) stimulated wild-type TC21 GTP hydrolysis in vitro. Thus, extracellular signals that activate Ras via SOS1 activation may cause coordinate activation of Ras and TC21. Second, we determined if Raf kinases were effectors for TC21 transformation. Unexpectedly, yeast two-hybrid binding analyses showed that although both Ras and TC21 could interact with the isolated Ras-binding domain of Raf-1, only Ras interacted with full-length Raf-1, A-Raf, or B-Raf. Consistent with this observation, we found that Ras- but not TC21-transformed NIH 3T3 cells possessed constitutively elevated Raf-1 and B-Raf kinase activity. Thus, Raf kinases are effectors for Ras, but not TC21, signaling and transformation. We conclude that common upstream signals cause activation of Ras and TC21, but activated TC21 controls cell growth via distinct Raf-independent downstream signaling pathways.  相似文献   

9.
Branching morphogenesis is a widespread mechanism used to increase the surface area of epithelial organs. Many signaling systems steer development of branched organs, but it is still unclear which cellular processes are regulated by the different pathways. We have used the development of the air sacs of the dorsal thorax of Drosophila to study cellular events and their regulation via cell-cell signaling. We find that two receptor tyrosine kinases play important but distinct roles in air sac outgrowth. Fgf signaling directs cell migration at the tip of the structure, while Egf signaling is instrumental for cell division and cell survival in the growing epithelial structure. Interestingly, we find that Fgf signaling requires Ras, the Mapk pathway, and Pointed to direct migration, suggesting that both cytoskeletal and nuclear events are downstream of receptor activation. Ras and the Mapk pathway are also needed for Egf-regulated cell division/survival, but Pointed is dispensable.  相似文献   

10.
Palmitoylation is postulated to regulate Ras signaling by modulating its intracellular trafficking and membrane microenvironment. The mechanisms by which palmitoylation contributes to these events are poorly understood. Here, we show that dynamic turnover of palmitate regulates the intracellular trafficking of HRas and NRas to and from the Golgi complex by shifting the protein between vesicular and nonvesicular modes of transport. A combination of time-lapse microscopy and photobleaching techniques reveal that in the absence of palmitoylation, GFP-tagged HRas and NRas undergo rapid exchange between the cytosol and ER/Golgi membranes, and that wild-type GFP-HRas and GFP-NRas are recycled to the Golgi complex by a nonvesicular mechanism. Our findings support a model where palmitoylation kinetically traps Ras on membranes, enabling the protein to undergo vesicular transport. We propose that a cycle of depalmitoylation and repalmitoylation regulates the time course and sites of Ras signaling by allowing the protein to be released from the cell surface and rapidly redistributed to intracellular membranes.  相似文献   

11.
The formation of the KRas4B-PDEδ complex activates different signaling pathways required for the development and maintenance of cancer. Previous experimental and theoretical studies have allowed researchers to design an inhibitor of the KRas4B-PDEδ complex, “Deltarasin.” This inhibitor binds to the prenyl-binding pocket of PDEδ and subsequently inhibits the proliferation of human pancreatic ductal adenocarcinoma cells that depend on oncogenic KRas4B. Nevertheless, structural and energetic information about the inhibitory effects of Deltarasin on the KRas4B-PDEδ complex are not available. In this study, we explore the properties of Deltarasin in inhibiting the formation of wild-type and mutant KRas4B-PDEδ complexes present in different cell lines expressing mutant RAS genes (G12D, G12C, G12V, G13D, Q61L, and Q61R) using 1.7 μs molecular dynamics (MD) simulations in combination with the MMGBSA approach. Our results revealed the energetic and structural mechanisms that suggest a higher affinity of Deltarasin for PDEδ than the farnesylated HVR. Moreover, Deltarasin exerts another dissociative effect by binding to the protein-protein dimeric interface of wild-type KRas4B-PDEδ, whereas associative and dissociative effects were observed for mutant KRas4B-PDEδ, providing a mechanistic explanation for the inhibitory effects of Deltarasin on different cancer cell lines.  相似文献   

12.
Ras proteins are essential components of signal transduction pathways that control cell proliferation, differentiation, and survival. It is well recognized that the functional versatility of Ras proteins is accomplished through their differential compartmentalization, but the mechanisms that control their spatial segregation are not fully understood. Here we show that HRas is subject to ubiquitin conjugation, whereas KRas is refractory to this modification. The membrane-anchoring domain of HRas is necessary and sufficient to direct the mono- and diubiquitination of HRas. Ubiquitin attachment to HRas stabilizes its association with endosomes and modulates its ability to activate the Raf/MAPK signaling pathway. Therefore, differential ubiquitination of Ras proteins may control their location-specific signaling activities.  相似文献   

13.
Cells expressing oncogenic Ras proteins transmit a complex set of signals that ultimately result in constitutive activation of signaling molecules, culminating in unregulated cellular function. Although the role of oncogenic Ras in a variety of cellular responses including transformation, cell survival, differentiation, and migration is well documented, the direct Ras/effector interactions that contribute to the different Ras biological end points have not been as clearly defined. Observations by other groups in which Ras-dependent transformation can be blocked by expression of either dominant negative forms of Phosphatidylinositol (PI) 3-kinase or PTEN, a 3-phosphoinositide-specific phosphatase, support an essential role for PI 3-kinase and its lipid products in the transformation process. These observations coupled with the in vitro observations that the catalytic subunits of PI 3-kinase, the p110 isoforms, bind directly to Ras-GTP foster the implication that a direct interaction between an oncogenic Ras protein and PI 3-kinase are causal in the oncogenicity of mutant Ras proteins. Using an activated Ha-Ras protein (Y64G/Y71G/F156L) that fails to interact with PI 3-kinase, we demonstrate that oncogenic Ha-Ras does not require a direct interaction with PI 3-kinase to support anchorage-independent growth of IEC-6 epithelial cells. We do find, however, that IEC-6 cells expressing an oncogenic Ha-Ras protein that no longer binds PI 3-kinase are greatly impaired in their ability to migrate toward fibronectin.  相似文献   

14.
《Biophysical journal》2022,121(19):3730-3744
Ras dimers have been proposed as building blocks for initiating the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cellular signaling pathway. To better examine the structure of possible dimer interfaces, the dynamics of Ras dimerization, and its potential signaling consequences, we performed molecular dynamics simulations totaling 1 ms of sampling, using an all-atom model of two full-length, farnesylated, guanosine triphosphate (GTP)-bound, wild-type KRas4b proteins diffusing on 29%POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine)-mixed POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Our simulations unveil an ensemble of thermodynamically weak KRas dimers spanning multiple conformations. The most stable conformations, having the largest interface areas, involve helix α2 and a hypervariable region (HVR). Among the dimer conformations, we found that the HVR of each KRas has frequent interactions with various parts of the dimer, thus potentially mediating the dimerization. Some dimer configurations have one KRas G-domain elevated above the lipid bilayer surface by residing on top of the other G-domain, thus likely contributing to the recruitment of cytosolic Raf kinases in the context of a stably formed multi-protein complex. We identified a variant of the α45 KRas-dimer interface that is similar to the interfaces obtained with fluorescence resonance energy transfer (FRET) data of HRas on lipid bilayers. Interestingly, we found two arginine fingers, R68 and R149, that directly interact with the beta-phosphate of the GTP bound in KRas, in a manner similar to what is observed in a crystal structure of GAP-HRas complex, which can facilitate the GTP hydrolysis via the arginine finger of GTPase-activating protein (GAP).  相似文献   

15.
Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation.  相似文献   

16.
Xie CG  Wei SM  Cai JT 《Cellular signalling》2012,24(2):524-531
Ras is known as an oncogene transferring signals from the plasma membrane. Recent studies have demonstrated that plasma membrane was not the unique platform for Ras signaling. Ras could also be endocytosed and transported to different endomembrane compartments, evoking different signal pathways there. It is of great significance to exploit the unique intracellular trafficking features of different Ras isoforms to develop new anti-Ras drugs. ADP-ribosylation factor 6 (Arf6) was known to mediate one of the clathrin-independent endocytosis (CIE) pathways. The role of Arf6 in K-Ras dynamic remains largely unknown. In this study, we showed that K-RasG12V co-localized with Arf6 at the plasma membrane, and entered the tubular endosomes or protrusions induced by cytochalasin D or aluminum fluoride in the same way as H-RasG12V does. A subcellular fractionation experiment demonstrated that Arf6 siRNA treatment reduced the plasma membrane presence of both endogenous Ras isoforms and inhibited the phosphorylation of Erk triggered by EGF. When co-expressed with Arf6Q67L, both isoforms were sequestered into the large phosphatidylinositol 4,5-biphosphate [PI(4,5)P2]-enriched vacuoles. However, when co-expressed with Arf6T27N, K-RasG12V co-localized with Arf6T27N at the tubular endosomes significantly than H-RasG12V. Immunoprecipitation and GST fusion protein pull-down studies found out for the first time that K-RasG12V interacted with Arf6T27N. Swapping mutation study showed that the above difference was due to different C-termini. Our study indicated that Arf6 was involved in the dynamic regulation of both Ras isoforms.  相似文献   

17.
Ras GTPases are ubiquitous plasma membrane transducers of extracellular stimuli. In addition to their role as oncogenes, Ras GTPases are key regulators of cell function. Each of the Ras isoforms exhibits specific modulatory activity on different cellular pathways. This has prompted researchers to determine the pathophysiological roles of each isoform. There is a proven relationship between the signaling pathways of transforming growth factor-β1 (TGF-β1) and Ras GTPases. To assess the individual role of H-Ras oncogene in basal and TGF-β1-mediated extracellular matrix (ECM) synthesis, proliferation, and migration in fibroblasts, we analyzed these processes in embryonic fibroblasts obtained from H-Ras knockout mice (H-ras(-/-)). We found that H-ras(-/-) fibroblasts exhibited a higher basal phosphatidylinositol-3-kinase (PI3K)/Akt activation than wild-type (WT) fibroblasts, whereas MEK/ERK 1/2 activation was similar in both types of cells. Fibronectin and collagen synthesis were higher in H-ras(-/-) fibroblasts and proliferation was lower in H-ras(-/-) than in WT fibroblasts. Moreover, H-Ras appeared indispensable to maintain normal fibroblast motility, which was highly restricted in H-ras(-/-) cells. These results suggest that H-Ras (through downregulation of PI3K/Akt activation) could modulate fibroblast activity by reducing ECM synthesis and upregulating both proliferation and migration. TGF-β1 strongly increased ERK and Akt activation in WT but not in H-ras(-/-) fibroblasts, suggesting that H-Ras is necessary to increase ERK 1/2 activation and to maintain PI3K downregulation in TGF-β1-stimulated fibroblasts. TGF-β1 stimulated ECM synthesis and proliferation, although ECM synthesis was higher and proliferation lower in H-ras(-/-) than in WT fibroblasts. Hence, H-Ras activation seems to play a key role in the regulation of these effects.  相似文献   

18.
Ras family GTPases (RFGs) regulate signaling pathways that control multiple biological processes. How signaling specificity among the closely related family members is achieved is poorly understood. We have taken a proteomics approach to signaling by RFGs, and we have analyzed interactions of a panel of RFGs with a comprehensive group of known and potential effectors. We have found remarkable differences in the ability of RFGs to regulate the various isoforms of known effector families. We have also identified several proteins as novel effectors of RFGs with differential binding specificities to the various RFGs. We propose that specificity among RFGs is achieved by the differential regulation of combinations of effector families as well as by the selective regulation of different isoforms within an effector family. An understanding of this new level of complexity in the signaling pathways regulated by RFGs is necessary to understand how they carry out their many cellular functions. It will also likely have critical implications in the treatment of human diseases such as cancer.  相似文献   

19.
20.
BACKGROUND: Genes of the Raf family encode kinases that are regulated by Ras and mediate cellular responses to growth signals. Recently, it was shown that activating mutations of BRaf are found with high frequency in human melanomas. The Ras family member most often mutated in melanoma is NRas. METHODS: The constitutive activation of the Ras/Raf signaling pathway suggests an impact on the clinical course of the tumor. To address this notion, we analyzed tumor DNA from 114 primary cutaneous melanomas and of 86 metastatic lesions obtained from 174 patients for mutations in BRaf (exons 15 and 11) and NRas (exons 1 and 2) by direct sequencing of PCR products and correlated these results with the clinical course. RESULTS: In 57.5% of the tumors either BRaf or NRas were mutated with a higher incidence in metastatic (66.3%) than in primary lesions (50.9%). Although the majority of BRaf mutations affected codon 599, almost 15% of mutations at this position were different from the well-described exchange from valine to glutamic acid. These mutations (V599R and V599K) also displayed increased kinase and transforming activity. Surprisingly, the additional BRaf variants D593V, G465R and G465E showed a complete loss of activity in the in vitro kinase assay; however, cells overexpressing these mutants displayed increased Erk phosphorylation. The correlation of mutational status and clinical course revealed that the presence of BRaf/NRas mutations in primary tumors did not negatively impact progression free or overall survival. In contrast, however, for metastatic lesions the presence of BRAF/NRAS mutations was associated with a significantly poorer prognosis, i.e. a shortened survival. CONCLUSION: We demonstrate a high - albeit lower than initially anticipated - frequency of activating BRaf mutations in melanoma in the largest series of directly analyzed tumors reported to date. Notably, the clinical course of patients harboring activating BRaf mutations in metastatic melanoma was significantly affected by the presence of a constitutive BRaf activation in these.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号