首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Interactions between Leydig and Sertoli cells, as well as a stimulatory effect of FSH on Leydig cell activity, have been reported in many studies. In order to investigate these interactions, the ultrastructure of immature pig Leydig cells under different culture conditions has been studied. When cultured alone in a chemically defined medium, there is a marked regression of the Leydig cell smooth endoplasmic reticulum and a swelling of the mitochondria. Addition of FSH or hCG does not prevent these phenomena. Co-culturing of Leydig cells with Sertoli cells from the same animal maintains the smooth endoplasmic reticulum at the level seen in vivo and in freshly isolated Leydig cells. The addition of FSH to the co-culture stimulates its development and increases Leydig cell activity, as assessed by an increase in hCG binding sites and an increased steroidogenic response to hCG. These results suggest that Sertoli cells exert a trophic effect on Leydig cells, and that the stimulatory effect of FSH on Leydig cell function is mediated via the Sertoli cells. These results reinforce the concept of a local regulatory control of Leydig cell steroidogenesis.Post-Doctoral fellow supported by CIRIT, Generalitat de Catalunya, Spain  相似文献   

2.
The aim of this study is to examine the influence of Sertoli cells on LH binding to Leydig cells in culture in immature mice. Leydig cells and Sertoli cells were obtained from the testes of immature C57BL/6Ncrj mice and were cultured in serum-free medium for 7 days. The LH binding to Leydig cells and the FSH binding to Sertoli cells were dependent on incubation time, the number of cells, and the amount of labelled hormone added. The dissociation constant for LH binding to Leydig cells was 7.3 x 10(-10) M. Co-culture of Leydig cells with Sertoli cells for 7 days decreased LH binding to Leydig cells. The binding was 34.9% of that to Leydig cells cultured alone. After cultivation of Leydig cells with spent Sertoli cell-cultured medium (SM) for the last 4 days of the 7-day culture period, LH binding to Leydig cells decreased to as low as 17.4% of that of the controls. For the controls, LH binding was measured in Leydig cells cultured in spent Leydig cell-cultured medium (LM). There was no difference between SM- and LM-cultures in the final survival rate or the percentage of cells showing histochemically demonstrated 3 beta-hydroxysteroid dehydrogenase activity. These data suggest that some factor or factors are secreted from the cultured Sertoli cells and inhibit the binding of LH to Leydig cells in culture.  相似文献   

3.
Addition of concentrated rat Sertoli cell conditioned medium (rSCCM) to isolated Leydig cells from immature rats stimulated steroid production more than 13-fold within 4 h. LH-stimulated steroidogenesis was not enhanced by addition of rSCCM. The biological activity of the concentrated rSCCM was higher after incubation of Sertoli cells with FSH, whereas FSH alone did not stimulate steroid production. This effect of rSCCM was not due to inhibin, since highly purified 32 kDa rat inhibin, in doses equivalent to those present in rSCCM, had no effect on steroidogenesis during the 4 h incubation period. Furthermore, inhibin could be separated from the Leydig cell stimulating factor by anion-exchange chromatography. These results indicate a short-term paracrine control of Leydig cell steroidogenesis by Sertoli cell derived factors, which differ from inhibin.  相似文献   

4.
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to  相似文献   

5.
采用无血清培养的方法,分析了促肾上腺激素皮质激素(adrenocorticotropic hormone,ACTH)、黄体生成素(luteinizing hormone,LH)、cAMP、内啡肽(endorphin)和纳络酮(naloxone)对原代共培养的恒河猴(Macaca mulatta)睾丸间质细胞与支持细胞雌二醇分泌水平的影响。结果显示:ACTH、LH、cAMP和纳络酮对原代共培养恒河猴睾丸间质细胞与支持细胞的雌二醇分泌水平具有促进作用,并且这种影响与共培养的间质细胞数量呈线性关系,即共培养的间质细胞数量增加,雌二醇分泌水平亦明显上升;而内啡肽对原代共培养恒河猴睾丸间质细胞与支持细胞的雌二醇分泌水平有明显的抑制作用。研究表明,恒河猴睾丸的间质细胞对支持细胞分泌雌二醇具有调节作用。  相似文献   

6.
The regulating effect of follicle-stimulating hormone (FSH) on Leydig cell function was studied using a model of immature porcine Leydig and Sertoli cells cultured in a hormone supplemented defined medium. FSH pretreatment for 2 days of Leydig cells cultured alone was with no effect. FSH pretreatment of Leydig cells cocultured with Sertoli cells increases Leydig cell activity in an FSH dose-dependent manner with a maximal effect observed at 50 ng/ml porcine FSH (pFSH). Leydig cells cultured for 2 days in conditioned medium (CM) by FSH stimulated (FSH-CM) Sertoli cells, as compared to CM by unstimulated (control) (C-CM) Sertoli cells show an increase of their activity with a maximal effect observed at 50 ng/ml pFSH. Leydig cells cultured in CM as compared to non CM, show a marked development of organelles (smooth endoplasmic reticulum and mitochondria) involved in the steroidogenic activity. The activity of FSH-CM as compared to C-CM on Leydig cell function was non dialyzable and trypsin sensitive. These data suggest that Sertoli cells exert a regulatory action on Leydig cell steroidogenic activity via FSH dependent secreted proteins.  相似文献   

7.
In Experiment 1, the influence of exogenous GH on steroid secretion by granulosa and theca interna cells recovered from small (1-3 mm), medium (4-6 mm) and large (8-12 mm) follicles was tested. In the second experiment, theca cells (Tc) and granulosa cells (Gc) obtained from large follicles were cultured separately or in two types, Tc/Gc co-culture, where both types of cells were mixed in one well or Gc and Tc were separated by cell culture membrane inserts. In the third experiment, the influence of GH on the morphology of Gc and Tc cells and activity of Delta(5),3beta-hydroxysteroid dehydrogenase (3beta-HSD) was studied. Cells were grown in the control medium (M199+5% of calf serum) or supplemented with 100 ng/ml GH. Testosterone (10(-7) M) was added as the aromatase substrate to granulosa cells cultures. The media were assayed after 48 h of culture for progesterone and oestradiol by RIA. GH added to the culture media had no effect on oestradiol and progesterone secretion by granulosa cells isolated from small and medium follicles while it stimulated both oestradiol and progesterone secretion by Gc isolated from large preovulatory follicles. A stimulatory effect on oestradiol secretion by Tc isolated from all size follicles was observed. GH did not stimulate progesterone secretion by Tc isolated from small follicles but stimulated progesterone secretion by Tc isolated from medium and large preovulatory follicles. Both co-culture systems exhibited synergistic effect on oestradiol secretion. The stimulatory effect on progesterone secretion under the influence of GH was observed in Gc cultured alone and Tc cultured alone. In contrast, the secretion of progesterone was attenuated in both co-culture systems and the addition of GH further augmented this attenuation. A statistically significant increase in oestradiol secretion was observed in all culture conditions. The addition of GH to the culture medium stimulated the activity of 3beta-HSD compared with the control culture from both types of cells. In conclusion, the present studies indicate that there are direct and follicular development stage dependent actions of GH on steroidogenesis of porcine follicular cells.  相似文献   

8.
The present work was done to investigate the cell localization of testicular aromatase activity and its regulation in immature pig testis using an in vitro model. Leydig cells and Sertoli cells were isolated from immature pig testes and cultured alone or together in the absence or presence of human chorionic gonadotropin (hCG) or porcine follicle-stimulating hormone (pFSH) for 2 days. At the end of incubation, the amounts of testosterone (T), estrone sulfate (E1S) and estradiol (E2) were measured. Then the cells were incubated for 4 h in the presence of saturating concentrations of delta 4-androstenedione (3 microM) and the amounts of E1S and E2 were measured again (aromatase activity). The ability of Sertoli cells to produce estrogens was very low and neither hCG nor pFSH had any significant effect. hCG stimulated, in a dose-dependent manner, the secretion of T and E1S by Leydig cells cultured alone as well as the aromatase activity of these cells. The main estrogen produced by Leydig cells was E1S. pFSH also stimulated the above parameters of Leydig cell function; this may have been due to the contamination of this hormone with luteinizing hormone (LH). Coculture of Leydig cells with Sertoli cells without gonadotropins had very small effects on T and E1S production and on aromatase activity. However, treatment of coculture with increasing concentrations of hCG had a dramatic effect on Leydig cell functions. For each hCG concentration, the amounts of T and E1S secreted, as well as the aromatase activity of the coculture, were 2- to 3-fold higher than those of Leydig cells cultured alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To examine whether immature rat Sertoli cells in culture secrete a factor(s) which stimulates testosterone production by mature mouse Leydig cells, Sertoli cell-enriched cultures were prepared from 3-week-old male rats with trypsin and collagenase. Sertoli cells were plated at an initial density of 3-5 x 10(6) cells/35 mm well and cultured in 3 ml serum free media supplemented with insulin (10 micrograms/ml). Sertoli cell culture medium (SCCM) collected every 3rd day was added to Leydig cells (10(6) cells in 1 ml of MEM with 2% steroid-free FCS) prepared from 10-week-old mice by mechanical separation and incubated for 3 h at 34 degrees C. Secreted testosterone was determined by RIA. SCCM 15 times concentrated by Amicon YM10 membrane demonstrated a dose-dependent stimulation of testosterone production, whereas there was no effect on testosterone secretion when Leydig cells were maximally stimulated by LH. Leydig cell stimulating activity was retained by both a dialysis membrane with a pore size of 24 A and an ultrafiltration membrane with a molecular weight cut-off of 10 kDa. However, activity was reduced by heating at 60 degrees C for 30 min and almost lost after incubation with 0.1% trypsin for 1 h at 37 degrees C. This activity was not retained by means of a Con A-Agarose column and was demonstrated only in break-through fractions. HPLC gel filtration of a 15 times concentrated SCCM preparation on a TSK gel G3000SW revealed Leydig cell-stimulating activity at approximately 13 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An ultrastructural investigation revealed the presence of true Leydig cells in the testis of sexually mature specimens of Torpedo marmorata. They showed the typical organization of steroid-hormone-producing cells, which, however, changed as spermatocysts approached maturity. In fact, they appeared as active cells among spermatocysts engaged in spermatogenesis, while in regions where spermiation occurred, they progressively regressed resuming the fibroblastic organization typically present in the testis of immature specimens. Such observations strongly suggest that these cells might be engaged in steroidogenesis and actively control spermatogenesis. Sertoli cells, too, appeared to play a role in spermatogenesis control, since, like Leydig cells, they showed the typical aspect of steroidogenic cells. In addition, the presence of gap junctions between Sertoli cells suggests that their activity might be coordinated. After sperm release, most Sertoli cells were modified and, finally, degenerated, but few of them changed into round cells (cytoplasts) or round cell remnants, which continued their steroidogenic activity within the spermatocyst and the genital duct lumen. From the present observations, it can be reasonably concluded that, in T. marmorata, spermatogenesis depends on both Leydig and Sertoli cells, and, as postulated by Callard (1991), in cartilaginous fish, the function of the Leydig cells as producers of steroids might be more recent and subsequent to that of Sertoli cells. In this regard, it is noteworthy that, in immature males, when Leydig cells showed a fibroblastic organization, Sertoli cells already displayed the typical organization of a steroidogenic cell.  相似文献   

11.
Adult rat Leydig cell aromatase activity is stimulated 2.5 fold by LH or dbcAMP. Spent media prepared from seminiferous tubules or Sertoli cells of immature rats depress both the basal and the LH stimulated estradiol syntheses (25 and 20% decreases, respectively). These inhibitory effects are further enhanced when FSH is added to the culture medium of seminiferous tubules or Sertoli cells. Rat serum as well as culture media from other cell lines are ineffective while seminiferous tubule media from other immature animals (mouse, guinea-pig, calf) inhibit the aromatase activity. This Sertoli cell factor is a heat stable protein (molecular weight greater than 10 kDa), different from the LHRH-like Sertoli cell compound, which acts on the aromatase activity at a step beyond the adenylate cyclase.  相似文献   

12.
Inhibin, a hormone produced by Sertoli cells in response to FSH, regulates androgen production in nearby Leydig cells. Beta-endorphin synthesized by Leydig cells under LH control is also known to regulate Sertoli function. To delineate whether beta-endorphin might constitute part of a short loop regulatory system between these two testicular cells, the effect of this opiate on inhibin secretion was examined. Beta-endorphin alone did not alter basal inhibin accumulation in primary Sertoli cell-enriched cultures, however it did significantly reduce FSH-induced inhibin production and adenylyl cyclase activity but had no effect on forskolin-stimulated inhibin accumulation or adenylyl cyclase activity. Other opioid peptides (ACTH, dMSH, methionine-enkephalin) were without effect. These observations suggest that beta-endorphin regulates inhibin secretion by inhibiting FSH receptor coupling to adenylyl cyclase.  相似文献   

13.
There is increasing evidence that factors derived from the seminiferous tubules influence Leydig cell function in a paracrine way. In previous experiments we demonstrated that conditioned media from Sertoli cell-enriched cultures contain a protein with stimulatory activity on prepubertal rat Leydig cells. In this paper we further studied the specificity of this factor. In addition we describe a simple but efficient partial purification procedure. It is demonstrated that Sertoli cell conditioned media contain a factor that stimulates the testosterone output from prepubertal and adult Leydig cells. The effects are evident within the first hour of incubation and can be observed in the presence as well as in the absence of LH. Peritubular cells do not produce a similar factor but enhance the production of the Leydig cell stimulating factor when cocultured with Sertoli cells. The Sertoli cell factor acts on rat as well as on mouse Leydig cells. It barely influences the adrenostenedione output of ovarian stromal cells or the corticosterone output of adrenal cells. The production of this factor is enhanced by dbcAMP, FSH, L-isoproterenol and glucagon but is not affected by androgens. The characteristics of the Sertoli cell factor have been compared with those of a Leydig cell stimulating factor in the medium from an established rabbit kidney cell line: RK13. It is shown that the active principle in RK13 conditioned medium is also a thermolabile trypsin-sensitive protein with a mol. wt of more than 10,000. Nonetheless, the RK13 and Sertoli cell derived factors act by different mechanisms since at maximally effective concentrations their effects are additive. Finally it is demonstrated that molecular weight fractionation of Sertoli cell conditioned medium using an Amicon ultrafiltration system results in a 50- to 130-fold increase in Sertoli cell factor activity in a fraction corresponding to a mol. wt of 10,000 up to 30,000.  相似文献   

14.
Both the cell and the species specificities of the steroidogenic potentiating activity (SPA) of Sertoli cells on Leydig cells were studied using a coculture system. Coculture of purified pig Leydig cells with rat or pig Sertoli cells in the presence of FSH led in both cases, to a significant increase in hCG receptor number and in hCG-stimulated testosterone production. Similarly, coculture of bovine adrenal cells with rat or pig Sertoli cells enhanced the steroidogenic response of adrenal cells to ACTH and angiotensin II. Such effects were not observed when pig Leydig cells or bovine adrenal cells were cocultured with bovine aortic endothelial cells. Coculture of Sertoli and Leydig cells in the presence of hCG, resulted in a significant increase in FSH receptor number and in FSH-induced plasminogen activator activity. Such effects did not occur when Sertoli cells were cocultured with either adrenal or aortic endothelial cells.  相似文献   

15.
Data from several experimental approaches strongly suggest that Sertoli cells exert a paracrine control of the two main testicular functions, androgen secretion and spermatogenesis. Further evidence supporting this role of Sertoli cells was obtained by coculture of Sertoli cells with other testicular cells. Coculture of pig or rat Sertoli cells with pig Leydig cells produces an increase in the hCG receptor number and an increase in the steroidogenic activity of Leydig cells. Pretreatment with FSH further increases the values of these two parameters. These biochemical changes were associated with ultrastructural changes in Leydig cells. The effects of Sertoli cells on Leydig cells depend upon the ratio of the two cells and on the substrate in which the cells are cultured. Moreover, Leydig cells produce an increase in the FSH receptor number and in the FSH stimulation of plasminogen activator production by Sertoli cells. Coculture of rat or pig Sertoli cells with rat germ cells, induces an increase in the RNA and DNA biosynthetic activities of germ cells. Most of the stimulatory effects seemed to be mediated by diffusible factors, secreted by Sertoli cells, but full expression of the stimulatory action was observed when germ cells were in contact with other cells. In this coculture system, a fraction of rat germ cells containing mainly mature forms of spermatocytes inhibited rat Sertoli cell RNA and DNA synthesis, but had no effect on pig Sertoli cells. On the contrary, a fraction of rat germ cells richer in spermatogonias and preleptotene spermatocytes, stimulated rat Sertoli cell DNA synthesis but was without effect on pig Sertoli cells. These results clearly show that the stimulatory effects of Sertoli cells on Leydig and on germ cells which are not species specific are mediated mainly by diffusible factors, the secretion of which is regulates by FSH.  相似文献   

16.
In this study we sought to determine whether the main components of the nitric oxide (NO) pathway are localized within the Leydig cells of the human testis and whether the soluble guanylyl cyclase (sGC), the enzyme that accounts for NO effects, is functionally active in these cells. Using an amplified immunocytochemical technique, immunoreactivity for nitric oxide synthase (NOS-I), sGC and cyclic guanosine monophosphate (cGMP) was detected within the cytoplasm of human Leydig cells. Distinct differences in staining intensity were found between individual Leydig cells, between cell groups and between Leydig cells of different patients. By means of a specific cGMP-RIA, a concentration-dependent increase in the quantity of cGMP was measured in primary cultures of human Leydig cells following exposure to the NO donor sodium nitroprusside. In addition, NOS-I immunoreactivity was seen in Sertoli cells, whereas cGMP and sGC immunoreactivity was found in Sertoli cells, some apically situated spermatids and residual bodies of seminiferous tubules. Dual-labelling studies and the staining of consecutive sections showed that there are several populations of Leydig cells in the human testis. Most cells were immunoreactive for NOS-I, sGC and cGMP, but smaller numbers of cells were unlabelled by any of the antibodies used, or labelled for NOS-I or cGMP alone, for sGC and cGMP, or for NOS-I and sGC. These results show that the Leydig cells possess both the enzyme by which NO is produced and the active enzyme which mediates the NO effects. There are different Leydig cell populations that probably reflect variations in their functional (steroidogenic) activity. Received: 27 March 1996 / Accepted: 14 July 1996  相似文献   

17.
The present study was undertaken to document morphological changes in the testis of the seasonally breeding golden hamster, an animal model which has been studied extensively from an endocrine standpoint but for which morphological data is inadequate. Germ cells, Sertoli cells and Leydig cells were studied during active and regressed state of gonadal activity by exposing the animals to long (16L:8D) and short photoperiods (6L:18D), respectively. Testis of the hamster exposed to short photoperiods displayed more than a ten-fold reduction in weight and decreased seminiferous tubule diameter. The seminiferous tubules contained primarily Sertoli cell and spermatogonia but also occasional spermatocytes and round spermatids. Leydig cells were decreased in size, a change which appeared to be primarily due to a decrease in cytoplasmic volume. The Leydig cell endoplasmic reticulum which was atypically saccular displayed both rough and smooth components and was decreased during short photoperiods. Mitochondria generally appeared larger and showed considerable structural heterogeneity. Short photoperiod-induced changes in the Sertoli cells included a marked reduction in cell height and an apparent reduction in cell volume, absence of lateral processes, presence of small, almost spheroidal nuclei with inconspicuous nucleoli, an increase in the amount of lipid and decreases in the amount of smooth endoplasmic reticulum and glycogen. The striking differences in the testicular structure between the active and regressed state of gonadal activity follows photoperiod-induced changes in endocrine parameters and suggests that the hamster would be an ideal model to study structure-function relationships in the testis, and especially those related to the Sertoli cell.  相似文献   

18.
Summary Electron microscopic cytochemistry was used to determine the localization of five phosphatase enzymes—glucose-6-phosphatase, inosine diphosphatase, thiamine pyrophosphatase, acid phosphatase, and adenosine triphosphatase—in control human testes. Glucose-6-phosphatase occurred in the endoplasmic reticulum and nuclear envelope of Sertoli cells, Leydig cells and primitive spermatogonia, but was not observed in more advanced spermatogenic cells. The presence of glucose-6-phosphatase activity paralleled the presence of glycogen in spermatogenic cells, i.e., both occurred in type AL and AD spermatogonia but not in type AP or B spermatogonia or in more advanced spermatogenic cells. Inosine diphosphatase activity was found in the endoplasmic reticulum, nuclear envelope, and Golgi complex of Sertoli cells and all spermatogenic cells except late spermatids. Additionally, inosine diphosphatase activity was localized at the junctions between Sertoli cells and late spermatids, but was not associated with any other plasma membrane. Thiamine pyrophosphatase reaction product was found in the Golgi bodies of Sertoli cells and in spermatogenic cells through immature spermatids. Neither inosine diphosphatase nor thiamine pyrophosphatase was observed in the Golgi bodies of spermatids during acrosomal formation. Acid phosphatase activity was found in lysosomes of spermatogonia, spermatocytes, and spermatids, in lysosomes of Leydig cells, and in lysosomes, lipofuscin bodies, and Golgi cisternae of Sertoli cells. It is thought that Sertoli lysosomes play a role in the phagocytosis of degenerating germ cells; however, the role of spermatogenic or Leydig lysosomes is unknown. Adenosine triphosphatase activity occurred at the interfaces between two spermatogonia, and between Sertoli cells and spermatogonia, but was not observed in the spaces between two Sertoli cells, two spermatocytes, two spermatids, or between Sertoli cells and spermatocytes, or between Sertoli cells and spermatids.Supported in part by a grant from the U.S. Atomic Energy Commission (AT-(40-1)-4002).  相似文献   

19.
The temporal appearance of seasonal changes in numbers of Leydig, Sertoli, and germ cells was evaluated to determine if seasonally increased daily spermatozoan production might be preceded by changes in numbers of either of two somatic testicular cells. A significant increase in numbers of spermatogonia and Sertoli cells preceded the significant increase in number of Leydig cells in the approaching breeding season. Seasonal changes in parenchymal weight and in numbers of Sertoli cells, Leydig cells, and germ cells were maximal in May and June. Numbers of A or B spermatogonia in June were 2.4 to 2.5 times the number present in January. During the same time period, numbers of other germ cells, as well as Leydig cells and Sertoli cells, were increased by 1.5 to 1.9 times. The magnitude of change between January and March (first time period that the change was significant) was greater for A spermatogonia (1.7-fold) than for other cell types (1.3-fold to 1.5-fold). Hence, the need to accommodate more spermatogonial progeny might cause increased testicular size and number of somatic cells, including Sertoli cells. Season did not influence the rate of degeneration between A and B spermatogonia. However, in the breeding season, the conversion of B spermatogonia to primary spermatocytes was reduced. The lack of a seasonal difference in the ratio of primary spermatocytes per Sertoli cell was consistent with a limited capacity of individual Sertoli cells to accommodate primary spermatocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The aromatization of testosterone into 17 beta-estradiol (E2) was assessed in purified Leydig and Sertoli cells from rats aged 10-80 days. E2 was identified by gas chromatography-mass spectrometry (GC-MS) and measured both by radioimmunoassay (RIA) and GC-MS associated with stable isotope dilution. A potent competitive inhibitor of the aromatase activity, 4-hydroxyandrostenedione (4-OH-A) was used to test the enzymatic specificity. The basal aromatase activity was present in both cell types whatever the age of the animals. The basal E2 levels did not vary in Sertoli cells while a gradual increase was noted in Leydig cells until day 40, followed by a slight decrease in mature rats. In 10-day old animals, the aromatase activity was localized in Sertoli cells and highly stimulated by FSH; on day 20, both Sertoli and Leydig cells synthesized E2 although E2 from Sertoli cell origin was still predominant. Starting on day 20 until adulthood, the aromatase activity was under LH control in Leydig cells with a maximum around 40 days. The FSH and LH effects were mediated by cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号