首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variation in mutations in exons 3, 6, 7, 11 and 12 of the phenylalanine hydroxylase (PAH) gene was investigated in 59 children with phenylketonuria (PKU) and 100 normal children. Three single nucleotide polymorphisms were detected by sequence analysis. The mutational frequencies of cDNA 696, cDNA 735 and cDNA 1155 in patients were 96.2%, 76.1% and 7.6%, respectively, whereas in healthy children the corresponding frequencies were 97.0%, 77.3% and 8.3%. In addition, 81 mutations accounted for 61.0% of the mutant alleles. R111X, H64 > TfsX9 and S70 del accounted for 5.1%, 0.8% and 0.8% mutation of alleles in exon 3, whereas EX6-96A > G accounted for 10.2% mutation of alleles in exon 6. R243Q had the highest incidence in exon 7 (12.7%), followed by Ivs7 + 2 T > A (5.1%) and T278I (2.5%). G247V, R252Q, L255S, R261Q and E280K accounted for 0.8% while Y356X and V399V accounted for 5.9% and 5.1%, respectively, in exon 11. R413P and A434D accounted for 5.9% and 2.5%, respectively, in exon 12. Seventy-two variant alleles accounted for the 16 mutations observed here. The mutation characteristics and distributions demonstrated that EX6-96A > G and R243Q were the hot regions for mutations in the PAH gene in Shanxi patients with PKU.  相似文献   

2.
宋昉  金煜炜  王红  张玉敏  杨艳玲  张霆 《遗传》2005,27(1):53-56
为探讨中国苯丙酮尿症(PKU)人群中苯丙氨酸羟化酶(PAH)基因外显子7的突变特征,对147例PKU患儿的294个PAH基因外显子7以及两侧部分内含子序列,应用PCR-单链构象多态性(SSCP)分析及基因序列分析的方法进行了筛查和确定。共发现13种突变基因:G239D、R241C、R241fs、R243Q、G247S、G247V、R252Q、L255S、R261Q、M276K、E280G、P281L、Ivs7+2T>A,其中7 种突变基因在中国PKU人群首次发现:G239D 、R241fs 、G247S 、E280G、L255S、R261Q、P281L,前4种在国际上尚未见到报道,并已提交到国际PAH突变数据库(www.pahdb.mcgill.ca)。突变基因的总频率为30.61%(90 /294)。突变涉及了错义、缺失、移码和剪接位点4种突变类型。结果明确了PAH基因外显子7的突变种类和分布等特征,表明外显子7是中国人PAH基因突变的热点区域。 Abstract: To study mutation in exon 7 of the gene for the phenylalanine hydroxylase(PAH), the mutations in exon 7 and flanking sequence of PAH gene were detected by means of SSCP analysis and DNA sequencing, in 147 unrelated Chinese children with phynelketonuria and their parents. Thirteen different mutations, including 11 missense, 1 deletion and 1 splice mutation, were revealed in 90/294 mutant alleles (30.61%). The prevalent mutations were R243Q (22.8%) and Ivs7nt2t->a (2.38%). Seven novel mutations were identified: G239D, R241fsdelG, G247S, E280G, L255S, R261Q, P281L. These new mutations have not been described in Chinese PKU population and the first 4 mutants have not been reported and thus been submitted to www.pahdb,mcgill.ca. The missense was the most common type. The deletion and frameshift mutations were detected for the first time in Chinese PKU population. This study showed the mutation characteristics and their distribution in exon 7 of PAH gene and proved that the exon 7 was the hot region of PAH gene mutation in Chinese PKU population .  相似文献   

3.
In order to investigate the molecular basis of phenylketonuria (PKU) in Spain, we analyzed the restriction fragment length polymorphism (RFLP) haplotypes and common mutations in the phenylalanine hydroxylase (PAH) gene in 32 unrelated Spanish PKU families. The distribution of RFLP haplotypes differs from that of northern Europe. Mutant haplotypes 2 and 3 were completely absent in our sample. Approximately 65% of the mutant alleles are confined to three RFLP haplotypes, namely haplotypes 1, 6 and 9, also frequently found in other Mediterranean populations. We screened for previously described PKU mutations using the polymerase chain reaction and allele-specific oligonucleotides, and found IVS10,165T, E280K and P281L as the major mutations, representing 41% of the PKU alleles. Other mutations found were Y414C, and a new one, P244L. Mutations R408W and IVS12, prevalent in northern Europe, as well as others present in southern European populations (R252W, R261Q, L249F) were not detected in our sample. Our results reveal the genetic heterogeneity present in the Spanish PKU population, which shows similarities to others of Mediterranean origin.  相似文献   

4.
To develop a screening kit for detecting mutation hotspots of the phenylalanine hydroxylase (PAH) gene. Thirteen exons of the PAH gene were sequenced in 84 cases with phenylketonuria (PKU) diagnosed during neonatal genetic and metabolic disease screening in Shaanxi province, and their mutations were analyzed. We designed and developed a screening kit to detect nine mutation sites covering more than 50% of the PAH mutations found in Shaanxi province (c.728G>A, c.1197A>T, c.331C>T, c.1068C>A, c.611A>G, c.1238G>C, c.721C>T, c.442-1G>A, and c.158G>A) by using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) combined with fluorescent probe technology. Peripheral blood and dried blood samples from PKU families were used for clinical verification of the newly developed kit. PAH gene mutations were detected in 84 children diagnosed with PKU. A total of 159 mutant alleles were identified, consisting of 100 missense mutations, 28 shear mutations, 24 nonsense mutations, and 7 deletion mutations. Exon 7 had the highest mutation frequency (32.08%). Among them, the mutation frequency of p.R243Q was the highest, accounting for 20.13% of all mutations, followed by p.R111X, IVS4-1G>A, EX6-96A>G, and p.R413P; these five loci accounted for 47.17% (75/159) of all mutations. In addition, we identified three previously unreported PAH gene mutations (p.C334X, p.G46D, and p.G256D). Fifteen mutation sites were identified in the 47 PAH carriers identified by next-generation sequencing (NGS), which were verified by the newly developed kit, with an agreement rate of 100%. This newly developed kit based on ARMS-PCR combined with fluorescent probe technology can be used to detect common PAH gene mutations.  相似文献   

5.
Three novel missense mutations have been identified in the phenylalanine hydroxylase (PAH) genes of Chinese individuals afflicted with various degrees of phenylketonuria (PKU). A T-to-C transition was observed in exon 5 of the gene, resulting in the substitution of Phe161 by Ser161. Two substitutions, G-to-T and T-to-G, were observed in exon 7, resulting in the substitution of Gly247 by Val247 and Leu255 by Val255, respectively. Expression analysis demonstrated that these mutant proteins produced between 0 and 15% of normal PAH enzyme activity. Population screening of a Chinese sample population indicates that these mutations are quite rare, together accounting for only about 4% of all PKU alleles among the Chinese. The P161S and G247V mutations were each present on a single PAH RFLP haplotype 4 chromosome in patients form Northern China, while the L255V mutation was present on chromosomes of both haplotypes 18 and 21 in patients from Southern China. These results suggest that the remaining 30% of uncharacterized PKU alleles in the Chinese population may bear a large number of relatively rare PAH mutations.  相似文献   

6.
PAH 399 GTA(Val)→GTT(Val), a new silent mutation found in the Chinese   总被引:1,自引:1,他引:0  
Summary A silent mutation or sequence polymorphism, an A to T substitution at codon 399 in exon 11 of the phenylalanine hydroxylase (PAH) gene has been identified by DNA sequence analysis in the Chinese. The frequencies of this new mutation in normal and abnormal (phenylketonuria; PKU) genes are 0.005 and 0.09, respectively, based on the analyses of 100 apparently normal individuals and 39 PKU patients, as demonstrated by DNA amplification with polymerase chain reaction (PCR) and oligonucleotide hybridization methods. The results suggest that there is linkage disequilibrium between this polymorphism and PKU mutations in the PAH gene; approximately 10% of defect PAH alleles in the Chinese population may be identified with this sequence polymorphic marker.  相似文献   

7.
The major cause of hyperphenylalaninemia is mutations in the gene encoding phenylalanine hydroxylase (PAH). The known mutations have been identified primarily in European patients. The purpose of this study was to determine the spectrum of mutations responsible for PAH deficiency in the United States. One hundred forty-nine patients enrolled in the Maternal PKU Collaborative Study were subjects for clinical and molecular investigations. PAH gene mutations associated with phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) were identified on 279 of 294 independent mutant chromosomes, a diagnostic efficiency of 95%. The spectrum is composed of 71 different mutations, including 47 missense mutations, 11 splice mutations, 5 nonsense mutations, and 8 microdeletions. Sixteen previously unreported mutations were identified. Among the novel mutations, five were found in patients with MHP, and the remainder were found in patients with PKU. The most common mutations were R408W, IVS12nt1g-->a, and Y414C, accounting for 18.7%, 7.8%, and 5.4% of the mutant chromosomes, respectively. Thirteen mutations had relative frequencies of 1%-5%, and 55 mutations each had frequencies < or = 1%. The mutational spectrum corresponded to that observed for the European ancestry of the U.S. population. To evaluate the extent of allelic variation at the PAH locus within the United States in comparison with other populations, we used allele frequencies to calculate the homozygosity for 11 populations where >90% ascertainment of mutations has been obtained. The United States was shown to contain one of the most heterogeneous populations, with homozygosity values similar to Sicily and ethnically mixed sample populations in Europe. The extent of allelic heterogeneity must be a major determining factor in the choice of mutation-detection methodology for molecular diagnosis in PAH deficiency.  相似文献   

8.
We describe a simple and technically feasible method for mutation screening of the phenylalanine hydroxylase (PAH) gene and its application to Japanese and Chinese patients with hyperphenylalaninemia. The strategy is based on the identification of a nucleotide substitution by restriction enzyme analysis, coupled with PCR and direct sequencing of exon 7 of the PAH gene. Because the detection of various mutations can proceed simultaneously using the same technique, it is quite rapid and reproducible, making it possible to perform effective molecular diagnosis and carrier screening in most laboratories. Using this procedure, we found that the most common molecular defects were R413P in Hokkaido, Japan (35 %) and R243Q in Heilongjiang, China (50%). R111X, IVS4nt-1, and five mutations in exon 7 (R241C, R243Q, R252W, A259T, and S273P) accounted for 55% of phenylketonuria (PKU) alleles in Hokkaido. In Heilongjiang, the R111X, Y356X, and R408W mutations accounted for 35% of PKU alleles. Clinically, homozygotes or compound heterozygotes of null alleles, which express nonfunctional enzyme activity, were all associated with classic PKU. On the other hand, patients heterozygous for the R241C allele had a benign phenotype of mild hyperphenylalaninemia. The DNA diagnosis in early infancy can predict various PKU phenotypes, and can prove useful in decision-making concerning dietary therapy.  相似文献   

9.
The presence of nine mutations in the phenylalanine hydroxlase (PAH) gene, previously described in phenylketonuria (PKU) patients of other Mediterranean and European populations, was assessed in 47 Greek PKU and 3 hyperphenylalaninaemia (HPA) patients. Of the nine mutations investigated, only five were detected, characterizing 31 % of the PKU alleles in our patients.  相似文献   

10.
A detailed study of the mutant phenylalanine hydroxylase (PAH) gene from the eastern part of the Czech Republic (Moravia) is reported. A total of 190 mutant alleles from 95 phenylketonuria (PKU) families were analyzed for 21 prevalent Caucasian mutations and restriction fragment length polymorphism /variable number of tandem repeats (RFLP/VNTR) haplotypes. Eighty per cent of all mutant alleles were found to carry 11 mutations. The most common molecular defect was the mutation R408W (55.3%), with a very high degree of homozygosity (34.6%). Each of four other mutations (R158Q, R243X, G272X, IVS12nt1) accounted for more than 3% of PKU alleles. Rarely present were mutations IVS10nt546 (2.6%), R252W (2.6%), L48S (2.1%), R261Q (1.6%), Y414C (1.0%) and I65T (0.5%). Mutations that have been predominantly described in southern Europe (IVS7nt1, A259V, Y277D, R241H, T278N) were not detected. A total of 14 different mutant haplotypes were observed. Three unusual genotype-haplotype associations were identified (R158Q on haplotypes 2.3 and 7.8 and R252W on haplotype 69.3). There was a strong association between the mutation R408W and haplotype 2.3 (54.7%). Heterogeneity was found at mutations R408W (haplotypes 2.3 and 5.9), R158Q (haplotypes 4.3, 2.3 and 7.8) and IVS10nt546 (haplotypes 6.7 and 34.7). The molecular basis of PKU in the Moravian area appears to be relatively homogeneous in comparison with other southern and western European populations, thus providing a good starting point for prenatal diagnosis and early clinical classification.  相似文献   

11.
DNA haplotype data from the phenylalanine hydroxylase (PAH) locus are available from a number of European populations as a result of RFLP testing for genetic counseling in families with phenylketonuria (PKU). We have analyzed data from Hungary and Czechoslovakia together with published data from five additional countries--Denmark, Switzerland, Scotland, Germany, and France--representing a broad geographic and ethnographic range. The data include 686 complete chromosomal haplotypes for eight RFLP sites assayed in 202 unrelated Caucasian families with PKU. Forty-six distinct RFLP haplotypes have been observed to date, 10 unique to PKU-bearing chromosomes, 12 unique to non-PKU chromosomes, and the remainder found in association with both types. Despite the large number of haplotypes observed (still much less than the theoretical maximum of 384), five haplotypes alone account for more than 76% of normal European chromosomes and four haplotypes alone account for more than 80% of PKU-bearing chromosomes. We evaluated the distribution of haplotypes and alleles within these populations and calculated pairwise disequilibrium values between RFLP sites and between these sites and a hypothetical PKU "locus." These are statistically significant differences between European populations in the frequencies of non-PKU chromosomal haplotypes (P = .025) and PKU chromosomal haplotypes (P much less than .001). Haplotype frequencies of the PKU and non-PKU chromosomes also differ significantly (P much less than .001. Disequilibrium values are consistent with the PAH physical map and support the molecular evidence for multiple, independent PKU mutations in Caucasians. However, the data do not support a single geographic origin for these mutations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To date more than 1000 different variants in the PAH gene have been identified in patients with phenylketonuria (PKU). In Iran, several studies have been performed to investigate the genetics bases of the PKU in different parts of the country. In this study, we have analysed and present an update of the mutational landscape of the PAH gene as well as the population genetics and frequencies of detected variants for each cohort. Published articles on PKU mutations in Iran were identified through a comprehensive PubMed, Google Scholar, Web of Science (ISI), SCOPUS, Elsevier, Wiley Online Library and SID literature search using the terms: “phenylketonuria”, “hyperphenylalaninemia”, and “PKU” in combination with “Iran”, “Iranian population”, “mutation analysis”, and “Molecular genetics”. Among the literature-related to genetics of PKU, 18 studies were on the PKU mutations. According to these studies, in different populations of Iran 1497 patients were included for mutation detection that resulted in detection of 129 different mutations. Results of genetic analysis of the different cohorts of Iranian PKU patients show that the most prevalent mutation in Iran is the pathogenic splice variant c.1066-11G > A, occurring in 19.54% of alleles in the cohort. Four other common mutations were p.Arg261Gln, p.Pro281Leu, c.168 + 5G > C and p.Arg243Ter (8.18%, 6.45%, 5.88% and 3.7%, respectively). One notable feature of the studied populations is its high rate of consanguineous marriages. Considering this feature, determining the prevalent PKU mutations could be advantageous for designing screening and diagnostic panels in Iran.  相似文献   

13.
T Hamzehloei  SA Hosseini  R Vakili  M Mojarad 《Gene》2012,506(1):230-232

Background

Characterization of the molecular basis of phenylketonuria (PKU) in North-east of Iran has been accomplished through the analysis of 62 unrelated chromosomes from 31 Iranian PKU patients.

Methods

Phenylalanine hydroxylase (PAH) gene mutations have been analyzed by direct DNA sequencing exons 6, 7, 10 and 11.

Results

A mutation detection rate of 74% was achieved. Eleven different mutations were found, with the most frequent mutation, IVS10-11G > A, accounting for 19% of Khorasan-Razavi PKU alleles. Ten mutations (R176X, E280K, IVS11 + 1G > C, S231P, Q383X, R243X, I224T, E390G, R252W and P281L) represent the rest PKU chromosomes. One novel mutation, Q383X in the homozygote form was identified which is located in the catalytic domain (residues143–410).

Conclusion

With this high detection rate of mutations in North-east of Iran, new strategy for carrier testing could be DNA sequencing of these four exons. The other exons and boundaries will be studied only when either one or no mutations are detected in the initial screen.  相似文献   

14.
Multiple origins for phenylketonuria in Europe   总被引:1,自引:1,他引:0       下载免费PDF全文
Phenylketonuria (PKU), a disorder of amino acid metabolism prevalent among Caucasians and other ethnic groups, is caused primarily by a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). PKU is a highly heterogeneous disorder, with more than 60 molecular lesions identified in the PAH gene. The haplotype associations, relative frequencies, and distributions of five prevalent PAH mutations (R158Q, R261Q, IVS10nt546, R408W, and IVS12n1) were established in a comprehensive European sample population and subsequently were examined to determine the potential roles of several genetic mechanisms in explaining the present distribution of the major PKU alleles. Each of these five mutations was strongly associated with only one of the more than 70 chromosomal haplotypes defined by eight RFLPs in or near the PAH gene. These findings suggest that each of these mutations arose through a single founding event that occurred within time periods ranging from several hundred to several thousand years ago. From the significant differences observed in the relative frequencies and distributions of these five alleles throughout Europe, four of these putative founding events could be localized to specific ethnic subgroups. Together, these data suggest that there were multiple, geographically and ethnically distinct origins for PKU within the European population.  相似文献   

15.
Phenylalanine hydroxylase (PAH) deficiency is caused by mutations in the PAH gene (12q22-q24) resulting in a primary deficiency of the PAH enzyme activity, intolerance to the dietary intake of phenylalanine (Phe) and production of the phenylketonuria (PKU) disease. To date there have been no reports on the molecular analysis of PKU in Iranian population. In this study, the states of the PKU disease in terms of prevalence and mutation spectrum among patients reside in the institutions for mentally retarded in Isfahan was investigated. In the first step, 611 out of 1541 patients with PKU phenotype or severe mental retardation were screened for the PKU disease using the Guthrie bacterial inhibition assay (GBIA) followed by HPLC. Among the patients screened 34 (5.56%) were found positive with abnormal serum Phe of above 7mg/dl. In the next step, the presence of 18 common mutations of the PAH gene in 26 of the patients with classical PKU (serum Phe above 20mg/dl) was investigated, using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Of the 52 independent mutant alleles that were analyzed, 34 (65.38%) were genotyped showing 8 mutations as follows: R252W (15.38%), Q232Q (13.46%), R261Q (7.69%), delL364 (7.69%), IVS10-11g>a (5.77%), L333F (5.77%), V245V (5.77%) and S67P (3.85%). The results from this study may serve as a reference to analyze the PKU mutations in other part of Iran, and to establish diagnostic tests for carrier detection and prenatal diagnosis of the PKU disease in Iranian population.  相似文献   

16.
Molecular characterization of phenylketonuria in Japanese patients   总被引:15,自引:0,他引:15  
We characterized phenylalanine hydroxylase (PAH) genotypes of Japanese patients with phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU and HPA mutations in 41 Japanese patients were identified by denaturing gradient gel electrophoresis and direct sequencing, followed by restriction fragment length polymorphism analysis to find a large deletion involving exons 5 and 6. Of 82 mutant alleles, 76 (92%) were genotyped showing 21 mutations. The major mutations were R413P (30.5%), R243Q (7.3%), R241 C (7.3%), IVS4nt-1 (7.3%), T278I (7.3%), E6nt-96A→g (6.1%), Y356X (4.9%), R111X (3.7%), and 442–706delE5/6 (2.4%). Eight new mutations (L52 S, delS70, S70P, Y77X, IVS3nt-1, A132 V, W187 C, and C265Y) and a polymorphism of IVS10nt-14 were detected. In vitro PAH activities of mutant PAH cDNA constructs were determined by a COS cell expression system. Six mutations, viz., R408Q, L52 S, R241 C, S70P, V388 M, and R243Q, had 55%, 27%, 25%, 20%, 16% and 10% of the in vitro PAH activity of normal constructs, respectively. The mean pretreatment phenylalanine concentration (0.83±0.21 mmol/l) of patients carrying the R408Q, R241 C, or L52 S mutation and a null mutation was significantly lower (P<0.0005) than that (1.99±0.65 mmol/l) of patients with both alleles carrying mutations associated with a severe genotype. Simple linear regression analysis showed a correlation between pretreatment phenylalanine concentrations and predicted PAH activity in 29 Japanese PKU patients (y=31.9–1.03x, r=0.59, P<0.0001). Genotype determination is useful in the prediction of biochemical and clinical phenotypes in PKU and can be of particular help in managing patients with this disorder. Received: 24 July 1998 / Accepted: 12 September 1998  相似文献   

17.
Summary The genetic heterogeneity at the phenylalanine hydroxylase (PAH) locus was studied in 88 families including 93 of the 105 children with phenylketonuria (PKU) or hyperphenylalaninemia (HPA) detected through the Swedish neonatal screening program from 1966 to the end of 1986. Haplotypes based on eight restriction fragment length polymorphisms (RFLPs) at the PAH locus could be constructed for 132 normal and 136 mutant alleles. The normal alleles were of 27 different RFLP haplotypes, 9 of which have not been described previously, but there was a dominance of a few haplotypes common to many European populations. The distribution of mutant alleles was significantly different from that in neighboring countries, even though over 90% of all mutant alleles were confined to six RFLP haplotypes, also prevalent in other European populations. Allele-specific oligonucleotide hybridization analysis for the Arg408 to Trp408 mutation and for the G to A splicing mutation in intron 12 showed exceptions to the previously reported linkage of these mutations to mutant haplotypes 2 and 3, respectively. Correlation of mutant alleles with clinical phenotypes pointed to the presence of at least two different mutations associated with each of six haplotypes. We argue that PKU/HPA in the Swedish population may be caused by at least 13 different mutations in addition to the 4 already identified. The theoretical informativity of RFLP analysis in heterozygote detection and prenatal diagnosis in PKU/HPA families was estimated at approximately 85%. Carrier detection could, in effect, be accomplished for 88% of the 56 healthy siblings in the families studied.  相似文献   

18.
Two missense mutations in the phenylalanine hydroxylase (PAH) genes of Orientals with phenylketonuria (PKU) have been identified. A G-to-A transition in exon 7 of the gene results in the substitution of Gln243 for Arg243 (R243Q) and accounts for 18% of all PKU chromosomes among Chinese. An A-to-G transition in exon 6 of the gene results in the substitution of Cys204 for Tyr204 (Y204C) and identifies about 13 and 5% of all PKU chromosomes in the Chinese and Japanese populations, respectively. The R243Q construct produced less than 10% of normal PAH activity in in vitro expression analysis in a eukaryotic cell system, and patients homozygous for this substitution exhibit a severe clinical phenotype. These results are consistent with previous findings in this expression system. The Y204C construct, however, produced near normal levels of PAH enzyme activity and immunoreactivity in this in vitro expression system. Because this substitution is present only on PKU chromosomes, it is a valuable marker for identifying the corresponding mutant allele for carrier screening of PKU. With the characterization of these two substitutions, about 60% of PKU alleles in China can now be identified. The continuing search for additional PKU mutations will permit effective carrier screening and prenatal gene diagnosis of PKU in East Asia.  相似文献   

19.
20.
Recurrent mutation in the human phenylalanine hydroxylase gene.   总被引:10,自引:6,他引:4       下载免费PDF全文
We report the identification of a missense mutation of Glu280 to Lys280 in the phenylalanine hydroxylase (PAH) gene of a phenylketonuria (PKU) patient in Denmark. The mutation is associated with haplotype 1 of the PAH gene in this population. This mutation has previously been found in North Africa, where it is in linkage disequilibrium with haplotype 38. While it is conceivable that this mutation could have been transferred from one haplotype background to another by a double crossover or gene conversion event, the fact that the mutation is exclusively associated with the two different haplotypes in the two distinct populations supports the hypothesis that these two PKU alleles are the result of recurrent mutations in the human PAH gene. Furthermore, since the site of mutation involves a CpG dinucleotide, they may represent hot spots for mutation in the human PAH locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号