首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature and daylength responses were determined in culture for isolates of the red alga Cystoclonium purpureum (Hudson) Batters from Nova Scotia (NS, Canada), Helgoland (HE, Germany), and Roscoff (RO, France). Most isolates survived temperatures of –1.5°/–2° to 23°C, whereas 25°C was lethal. Only the RO-gametophytes died at 23°C. Optimal growth conditions were 10°–20°C in both long and short days for the NS isolates and 8°–15°C and 8°–18°C at daylengths of >12 h for the RO and HE isolates, respectively. Tetrasporophytes and gametophytes of the NS isolate reproduced at 10°–20°C in long and short days within 5 months. At lower temperatures reproduction was limited or slow. The European isolates formed tetrasporangia at 10°–20°C (HE) or 5°–l8°C(RO), spermatangia at 5°–15°C (HE) or 5°–20°C (RO), and carpospores at 5°–15°C(HE) or 10°–15°C (RO). Short days either blocked or delayed reproduction of the European isolates. The phenology of C. purpureum was studied at Helgoland and Roscoff, where similar seasonal patterns were observed. In early spring, growth was rapid and plants started to form reproductive structures. In summer, tetra-and carpospores were shed followed by degeneration of the upright axes while branched holdfasts persisted. New upright axes and juvenile plants were formed in autumn, but these remained small during the winter months. Published data indicate that the seasonal pattern at Nova Scotia is similar, although the onset of growth and reproduction is delayed until the end of spring. These observations correspond well with the results of the experiments. The life history of C. purpureum is regulated by temperature and daylength. In the eastern Atlantic, the limiting effect of short days confines growth and reproduction to spring and summer. In the western Atlantic, low winter temperatures alone bring about the same seasonal pattern. After plants have reproduced, uprights degenerate in spite of continuing favorable conditions.  相似文献   

2.
Gametophytes of two Undaria species, U. pinnatifida and U. undarioides (Laminariales, Phaeophyceae), were studied to determine their water temperature requirements in order to understand their different distributions in Mie Prefecture, Japan. The optimal temperature for growth was 20°C for gametophytes of both species, and the upper critical temperature for growth was also the same for both species at 28°C. Therefore, the optimal and critical temperatures for growth of the gametophytes are not the main factors determining distribution. The optimal temperature for maturation of U. pinnatifida was approximately 10–15°C, whereas it was closer to 20–21°C for U. undarioides, a difference between these species of at least 5°C. In autumn and early winter, the seawater temperature at the mouth of Ise Bay, where U. pinnatifida is distributed, ranges from 21.6°C (October) to 12.7°C (December), and off Hamajima, where U. undarioides is found, the range is from 22.7°C (October) to 19.1°C (December). The seawater temperatures from October to December, which is the maturation season for the gametophytes, agreed well with the optimal temperature requirements for maturation of the gametophytes of both species. Thus the difference in the maturation temperature range of the gametophytes is a major factor determining distribution of these Undaria species along the Japanese coast.  相似文献   

3.
The isomorphic phases of Endocladia muricata (Post. & Rupr.) J. Ag. Were compared for photosynthetic and respiratory difference in response to a variety of environmental manipulations. Photosynthetic light response during submergence at 15° C and the pattern of respiratory recovery following prolonged emergence (3 h) at either 15° or 30° C were similar between gametophytes and tetrasporophytes. The phases showed the same ability to photosynthesize and respire during emergence at each temperature tested (15°, 25°, and 35° C, fully hydrated thalli) and at various desiccation state (measured at 25° C only). Submerged rates of photosynthesis following prolonged emergence at 15° and 30° C were, however slightly greater (17%) for tetrasporophytes as compared to gametophytes. Regardless of the life history phase, plants incubated at 15° C during emergence recovered more completely than plants incubated at 30° C. Photosynthetic recovery after 1 h in plants incubated at 15° C often “spiked” and yielded rates as great as 185% of pretreatment rates. Increased photosynthetic rates during recovery were absent for the 30° C incubations. The initial photosynthetic recovery of plants collected from the upper limits of distribution was greater than that of plants collected from the lower limits. Recovered rates of respiration were highly variable over time. Respiration often exceeded pretreatment values more then threefold, and the elevated rates were sustained for 12 h. Photosynthesis and respiration in air were comparable to rates in seawater and varied slightly with increasing temperature. Photosynthetic and respiratory rates also decreased with increasing tissue water loss. Thus, only slight differences in physiological performance were observed between phases and individuals collected from different vertical positions. Metabolic differences were transient and apparent only under experimental conditions that modeled extreme environmental conditions.  相似文献   

4.
Tetraspores from Petrocelis franciscana Setch. et Gardn. collected at Rockaway Beach, San Mateo County, California, 11 January 1971 were isolated into unialgal culture with Provasoli's enriched seawater medium at 10° and 15° C, 16:8 daily photoregime, 2000–2500 lx cool white fluorescent lighting. The germlings developed as crustose discs with marginal meristems until about 300–500 µm in diameter when erect multiaxial blades were established. The erect plants grew to reproductive maturity in 15° C but not in 10° C. By the fifth month of growth the erect axes flattened and branched dichotomously. At the end of 7 months the plants were reproductively mature. These cultured plants were morphologically similar to Gigartina agardhii Setch. et Gardn. (subgenus Mastocarpus) which occurs abundantly at Rockaway Beach. Male plants were non-papillate with spermatangia forming on the entire blade surface except at the growing tip and near the stipe. The female plants developed papillae which bore many procarps. Many of these procarps were penetrated and seemingly destroyed by intrusive filaments from adjacent vegetative branches but apparently a number were functional since a number of cystocarps developed on plants in both stationary and shake culture after 5 months. Some viable spores were released and germinated.  相似文献   

5.
We analysed the effects of temperature and photon fluence rate on meiospore germination, growth and fertility of gametophytes, and growth of young sporophytes of Laminaria ochroleuca. Maximum percentages of germination (91–98%) were obtained at 15°C and 18°C, independent of photon fluence rate. Optimal development of female gametophyte and maximum fecundity and reproductive success of gametophytes occurred at 15°C and 18°C and at 20 and 40 μmol m–2 s–1. Maximum relative growth rate of young sporophytes after 2 weeks of culture was achieved under the same conditions. L. ochroleuca gametophytes cannot reproduce and growth of its sporophytes is not competitive at temperatures close to 10°C. Received in revised form: 31 August 2001 Electronic Publication  相似文献   

6.
Coral reefs are expected to be severely impacted by rising seawater temperatures associated with climate change. The fertilization and early embryogenesis of four reef-building coral species representing three Indo-Pacific families were examined in a series of laboratory experiments where temperatures were increased up to 5–6°C at ambient. High levels of fertilization and normal embryogenesis were observed for Favites abdita, Favites chinensis and Mycedium elephantotus at temperatures to 32°C (+5°C) and embryos developed normally until the 5th cell cleavage. Acropora millepora was the only species to be affected by higher temperatures, exhibiting significantly reduced fertilization and a higher frequency of embryonic abnormalities at 32°C (+4°C), and fertilization ceased altogether at 34°C (+6°C). Early cell cleavage rates increased with temperature up to 32°C for all species.  相似文献   

7.
Phenology, irradiance, and temperature characteristics of an edible brown alga, Undaria pinnatifida (Laminariales), were examined from the southernmost natural population in Japan, both by culturing gametophytes and examining the photosynthetic activity of sporophytes using dissolved oxygen sensors and pulse amplitude-modulated chlorophyll fluorometer (IMAGING-PAM). Our surveys confirmed that sporophytes were present between winter and early summer, but absent by July. IMAGING-PAM experiments were used to measure maximum effective quantum yield (ΦII at 0 μmol photons m?2 s?1) for each of 14 temperatures (8–36 °C). Oxygen production was also determined over a coarser temperature gradient. Net photosynthesis and ΦII (at 0 μmol photons m?2 s?1) were observed to be temperature-dependent; the maximum ΦII was estimated to be 0.67, occurred at 21.2 °C, and was nearly identical to the optimal temperature of the net photosynthetic rate (21.7 °C). A net photosynthesis–irradiance (P–E) model revealed that saturation irradiance (E k) was 119.5 μmol photons m?1 s?1, and the compensation irradiance (E c) was 17.4 μmol photons m?1 s?1. Culture experiments on the gametophytes revealed that most individuals could not survive temperatures over 28 °C and that growth rates were severely inhibited. Based on our observations, temperatures greater than 20 °C are likely to influence photosynthetic activity and gametophyte survival, and therefore, it is possible that this species might become locally extinct if seawater temperatures in this region continue to rise.  相似文献   

8.
We have developed an experimental system of cohort monospores from clonal culture of leafy gametophytes in Porphyra yezoensis Ueda (strain TU-1). This system is quite different from traditional systems for algal protoplast experimentation, which require expensive enzymatic treatment and utilize an ineffective method of preservation. Cohort monospores were obtained by utilizing a mode of asexual reproduction in the culture strain (monospores) and artificial regulation (thallus length, temperature, light, etc.) of monospore release. When the leafy gametophytes that formed monospores were frozen at - 20°C in a cryoprotective solution composed of 5% DMSO and 5% dextran in 100% seawater, about 98% survived for 3 months. When stored at 5°C without cryoprotectants, these leafy gametophytes could be kept without monospore release for 1 week. Maximum monospore yield was about 3000 spores per 100 gametophytes, and germination rate was about 70%, This system will accelerate developmental biology studies in Porphyra.  相似文献   

9.
The red algaDelesseria sanguinea is strongly seasonal, producing gametangia in early tetrasporangia in mid- and new blades in late winter. A lamp was installed in the shallow subtidal off the Isle of Man, illuminating about 40 plants ofDelesseria for one hour in the night or day. Single blades from separate plants were held in laboratory tanks at different temperatures and in short days, long days and with a night-break. In the sea, the night-break prevented fertility in tetrasporophytes but some gametophytes became fertile. New blades were stimulated, arising 6 weeks early. Their lengths indicated a saturation level of about 10 μmol m−2 s−1 for one hour in 24. Growth rate calculations suggested a delay in stimulation until the ambient sea temperature dropped to 13°C. Tetrasporangia were formed after the night-break ceased in December but not January. In day-addition of light there was slight, if any, stimulation of blade production. In the laboratory, gametogenesis occurred readily in short days but not in long days or with a night-break. There was little or no effect of temperature between 8 and 14°C. Tetraspores were rarely formed in the laboratory. The timing of gametogenesis suggested a critical daylength of about 14 h. New blades were clearly stimulated by lower temperatures in the laboratory, few forming at 14°C and many at 7–10°C. They appeared mainly in long days or with a night-break but formed in short days after gametangia production. It is concluded that both gamete and tetraspore production are under photoperiodic control but require different conditions, possibly gametogenesis needing fewer cycles. There is some evidence for antagonism between new blade and reproductive structure initiation. The critical daylength could involve a timing differential of a month over the species geographical range. On the other hand it is suggested that its southern limit could be determined by the winter isotherm of 13°C, warmer than which might not allow blade initiation.  相似文献   

10.

The kelp Lessonia corrugata (Ochrophyta, Laminariales) is being developed for integrated multi-trophic aquaculture (IMTA) trials in the vicinity of salmon cages in Tasmania, Australia. Gametophytes are vegetally maintained before seeding on hatchery twine; however, the optimal temperature and light conditions for growth and sexual development are unknown. We measured vegetative size of female and male gametophytes and sexual development of females over a range of temperatures and irradiances using a temperature gradient table and neutral density light filters. Over a 4-week experiment, gametophytes were exposed to a combination of thermal (5.7–24.9 °C) and irradiance (10–100 μmol photons m?2 s?1) gradients, to assess biological performance. At the temperature extremes (hottest = 24.9 °C, coldest = 5.7 °C), we observed the critical thermal limits for this species and the results reveal a narrow optimal temperature range for growth and sexual development between 15.7 and 17.9 °C, with irradiances between 40 and 100 μmol photons m?2 s?1 resulting in fertile female gametophytes. Lessonia corrugata inhabits a small geographic range, found only around Tasmania, south of the Australian mainland, hence oceanic changes such as ongoing increases in sea surface temperatures (SSTs), and altered irradiance regimes may limit recruitment of the early microscopic life stages in the future. Our findings provide optimised culture conditions for aquaculture and information to predict the future geographic range of L. corrugata under ocean global change.

  相似文献   

11.
Warming ocean temperatures have been linked to kelp forest declines worldwide, and elevated temperatures can act synergistically with other local stressors to exacerbate kelp loss. The bull kelp Nereocystis luetkeana is the primary canopy-forming kelp species in the Salish Sea, where it is declining in areas with elevated summer water temperatures and low nutrient concentrations. To determine the interactive effects of these two stressors on microscopic stages of N. luetkeana, we cultured gametophytes and microscopic sporophytes from seven different Salish Sea populations across seven different temperatures (10–22°C) and two nitrogen concentrations. The thermal tolerance of microscopic gametophytes and sporophytes was similar across populations, and high temperatures were more stressful than low nitrogen levels. Additional nitrogen did not improve gametophyte or sporophyte survival at high temperatures. Gametophyte densities were highest between 10 and 16°C and declined sharply at 18°C, and temperatures of 20 and 22°C were lethal. The window for successful sporophyte production was narrower, peaking at 10–14°C. Across all populations, the warmest temperature at which sporophytes were produced was 16 or 18°C, but sporophyte densities were 78% lower at 16°C and 95% lower at 18°C compared to cooler temperatures. In the field, bottom temperatures revealed that the thermal limits of gametophyte growth (18°C) and sporophyte production (16–18°C) were reached during the summer at multiple sites. Prolonged exposure of bull kelp gametophytes to temperatures of 16°C and above could limit reproduction, and therefore recruitment, of adult kelp sporophytes.  相似文献   

12.
In unialgal culture, isolates of vegetative plants of Bostrychia pinnata often developed tetrasporangial stichidia and released viable tetraspores. Most tetra‐sporelings developed normal branching before reproduction, however, some sporelings developed procarps, and later, spermatangia on juvenille unbranched stages (< 1 mm). Most normally branched gametophytes (> 2 mm) were initially female before becoming bisexual when older and larger (> 5 mm). Unisexual male gametophytes were not seen in culture. Carposporophytes developed slowly (40–70 days) and were sometimes abortive or produced reduced numbers of carpo‐sporangia (10–15 in cultures compared with 40–50 in field material). Carpospores germinated more slowly than tetraspores and the tetrasporophytes required up to 6 months to reach reproductive maturity. The Polysi‐phonia‐type life‐history was completed in 9–12 months in the laboratory. Peripherohaptera were absent in cultured plants. The isolates from Florida, Guatemala and Peru did not reproduce sexually, but regularly underwent lower branch abscission as a means of vegetative reproduction. After several years in culture, most individual isolates became self‐incompatible. In the female, 1 or 2 procarps formed on each axial segment and most were 4‐celled with a few having 3 cells. A single branched sterile group of 3–7 cells was also present. After fertilization, the diploid nucleus in the carpogonium divided twice, isolating the capping element and trichogyne and establishing the connecting element adjacent to the auxiliary cell. In mature normal cystocarps the sterile group persisted and secreted mucilage into the central cavity. The mature pericarp was four layers thick (one layer of axial filaments and three cortical cell layers). Pseudocystocarps were common, produced no carpo‐sporangia, contained elongate sterile cells, and were enclosed with a partially developed pericarp. Carpogonia in which 4 nuclei were usually seen may indicate developmental failure resulting in pseudocystocarps.  相似文献   

13.
Most kelps (order Laminariales) exhibit distinct temporal patterns in zoospore production, gametogenesis and gametophyte reproduction. Natural fluctuations in ambient environmental conditions influence the intrinsic characteristics of gametes, which define their ability to tolerate varied conditions. The aim of this work was to document seasonal patterns in reproduction and gametophyte growth and survival of Ecklonia radiata (C. Agardh) J. Agardh in south-western Australia. These results were related to patterns in local environmental conditions in an attempt to ascertain which factors explain variation throughout the season. E. radiata was fertile (produced zoospores) for three and a half months over summer and autumn. Every two weeks during this time, gametophytes were grown in a range of temperatures (16–22°C) in the laboratory. Zoospore densities were highly variable among sample periods; however, zoospores released early in the season produced gametophytes which had greater rates of growth and survival, and these rates declined towards the end of the reproductive season. Growth rates of gametophytes were positively related to day length, with the fastest growing recruits released when the days were longest. Gametophytes consistently survived best in the lowest temperature (16°C), yet exhibited optimum growth in higher culture temperatures (20–22°C). These results suggest that E. radiata releases gametes when conditions are favourable for growth, and E. radiata gametophytes are tolerant of the range of temperatures observed at this location. E. radiata releases the healthiest gametophytes when day length and temperature conditions are optimal for better germination, growth, and sporophyte production, perhaps as a mechanism to help compete against other species for space and other resources.  相似文献   

14.
The effect of irradiance and temperature on the photosynthesis of the red alga, Pyropia tenera, was determined for maricultured gametophytes and sporophytes collected from a region that is known as one of the southern limits of its distribution in Japan. Macroscopic gametophytes were examined using both pulse‐amplitude modulated fluorometry and/or dissolved oxygen sensors. A model of the net photosynthesis–irradiance (P‐E) relationship of the gametophytes at 12°C revealed that the net photosynthetic rate quickly increased at irradiances below the estimated saturation irradiance of 46 μmol photons m?2 s?1, and the compensation irradiance was 9 μmol photons m?2 s?1. Gross photosynthesis and dark respiration for the gametophytes were also determined over a range of temperatures (8–34°C), revealing that the gross photosynthetic rates of 46.3 μmol O2 mgchl‐a?1 min?1 was highest at 9.3 (95% Bayesian credible interval (BCI): 2.3–14.5)°C, and the dark respiration rate increased at a rate of 0.93 μmol O2 mgchl‐a?1 min?1°C?1. The measured dark respiration rates ranged from ?0.06 μmol O2 mgchl‐a?1 min?1 at 6°C to ?25.2 μmol O2 mgchl‐a?1 min?1 at 34°C. The highest value of the maximum quantum yield (Fv/Fm) for the gametophytes occurred at 22.4 (BCI: 21.5–23.3) °C and was 0.48 (BCI: 0.475–0.486), although those of the sporophyte occurred at 12.9 (BCI: 7.4–15.1) °C and was 0.52 (BCI: 0.506–0.544). This species may be considered well‐adapted to the current range of seawater temperatures in this region. However, since the gametophytes have such a low temperature requirement, they are most likely close to their tolerable temperatures in the natural environment.  相似文献   

15.
Two different temperature regimes for eliciting reproduction in male and females of the Guam form of the brown treesnake were investigated. Males and females maintained at 24°C followed by a 60‐day cool period at 19°C exhibited substantial reproductive activity, and the females that produced clutches did so during a brief period after return to 24°C. In contrast, individuals maintained at 28°C followed by an identical 19°C cooling period exhibited relatively little reproductive activity, and although some females became vitellogenic, none produced eggs. Reproductive activity was virtually absent in all individuals in both groups 7 months after the end of the cool period. Thus, a period of cool temperatures elicits reproductive activity in both sexes and the effect is transitory. Temperatures experienced during the cool period were much lower than the snakes would experience on Guam, and temperatures there are also relatively invariant. Thus, it is possible that only minor fluctuations in temperature are sufficient to elicit reproduction in the Guam population. Because the Guam form does well under, and responds reproductively to, unusually cold temperatures for a lowland tropical reptile, concern that it may have the capacity to invade extralimital temperate areas is warranted. Zoo Biol 22:227–238, 2003. Published 2003 by Wiley‐Liss, Inc.  相似文献   

16.
Climate change is affecting marine ecosystems in many ways, including raising temperatures and leading to ocean acidification. From 2014 to 2016, an extensive marine heat wave extended along the west coast of North America and had devastating effects on numerous species, including bull kelp (Nereocystis luetkeana). Bull kelp is an important foundation species in coastal ecosystems and can be affected by marine heat waves and ocean acidification; however, the impacts have not been investigated on sensitive early life stages. To determine the effects of changing temperatures and carbonate levels on Northern California's bull kelp populations, we collected sporophylls from mature bull kelp individuals in Point Arena, CA. At the Bodega Marine Laboratory, we released spores from field-collected bull kelp, and cultured microscopic gametophytes in a common garden experiment with a fully factorial design crossing modern conditions (11.63 ± 0.54°C and pH 7.93 ± 0.26) with observed extreme climate conditions (15.56 ± 0.83°C and 7.64 ± 0.32 pH). Our results indicated that both increased temperature and decreased pH influenced growth and egg production of bull kelp microscopic stages. Increased temperature resulted in decreased gametophyte survival and offspring production. In contrast, decreased pH had less of an effect but resulted in increased gametophyte survival and offspring production. Additionally, increased temperature significantly impacted reproductive timing by causing female gametophytes to produce offspring earlier than under ambient temperature conditions. Our findings can inform better predictions of the impacts of climate change on coastal ecosystems and provide key insights into environmental dynamics regulating the bull kelp lifecycle.  相似文献   

17.
The reproductive phenology of Chondrus ocellatus and the effects of temperature and light on its growth were examined in Cheongsapo near Busan, Korea, from September 1994 to August 1995. The vegetative plants dominated over the year, with a peak occurrence in January. Gameto- and tetrasporophytes were most abundant in November and August. All vegetative and reproductive plants had a peak both in length and weight in October, when seawater temperature was highest (24°C). In laboratory culture, the maximum relative growth rate (RGR) of 2.94% day−1 was obtained at 20°C and 100 μmol photons m−2 s−1, whereas the lowest value was recorded at 25°C and 100 μmol photons m−2 s−1 in a 12: 12 h LD photoperiod regime. Among the three photoperiod regimes (8:16 h, 12:12 h, 16:8 h LD) tested, there was evidence of a higher RGR in the 12:12 h LD cycle. This result suggests that the growth and reproduction of C. ocellatus are correlated with the seawater temperature based on laboratory culture and field observations.  相似文献   

18.
Spores (collected at 10?±?1 °C, 2 h after releasing) and young gametophytes (newly generated from spores cultured at 10?±?1 °C for 8 days) of Saccharina japonica were first cultured at 15?±?1, 19?±?1, and 23?±?1 °C for various times (2, 5, and 8 days) and then at 10?±?1 °C (culturing patterns S and G, respectively). Spores were also cultured at a constant of 10?±?1 °C (pattern C) and used as the control. The length and percentage of young gametophytes, size and percentage of gametophytes, and ratio of female to male gametophytes were measured in order to determine the effect of temperature on the development of gametophytes. Temperature and exposure time of spores and young gametophytes at the first culturing temperature significantly affected the development of gametophytes as were indicated by all biological parameters except the ratio of female to male gametophytes. The spores were more sensitive to temperature than young gametophytes. Gametophytes developed from the spores that survived temperature stress can recover their growth. High temperature selection at the early developmental stages of gametophytes was effective for screening gametophytes applicable for breeding high temperature-resistant varieties and hybrids.  相似文献   

19.
Qualitative and quantitative differences in carrageenan composition of gametophytes and tetrasporophytes of Chondrus crispus were observed in this study. Carrageenans in gametophytes belong to the kappa family (κ-, ι-, ν- and μ-carrageenan). The dominant fractions were κ- and ι-carrageenan (more than 50% of the total carrageenans). In tetrasporophytes, the presence of λ-carrageenan was confirmed. Carrageenan content in gametophytes (37.4?±?1.68% DW) was higher than in tetrasporophytes (29.13?±?0.76% DW). Spatial and temporal variation in carrageenan content in both life cycle phases appears to be related mainly to seawater and air temperatures, insolation, water movement and desiccation. The highest values of carrageenan content were recorded in those localities where higher values of precipitation, wind speed or water movement occurred. A bimodal temporal pattern on carrageenan content was observed. Fronds showed a high carrageenan content in spring and autumn. During these seasons, the content was over 40% in gametophytes and 30% in the tetrasporophytes. In summer and winter, these values down in both life cycle phases below 30%. In general the highest carrageenan contents were related to highest seawater temperatures. On the contrary, high air temperature and high insolation appeared to be unfavourable for carrageenan production. GLM models were obtained to predict carrageenan production from natural C. crispus populations, along Galician coast.  相似文献   

20.
Scapholeberis rammneri does not hatch at temperatures below 19°C, and its temperature optimum, as derived from field and culture data, is situated close to 21°C. In a small pond, free of vertebrates and with few insects present, its population dynamics were governed entirely by temperature-dependent parameters, such as reproductive success and fertility. From cultures conducted at four different temperatures, it was found that culture reproductive success (the fraction of females in a culture that reproduce at least once before death occurs) leads to an estimate of net birth rates, and its complement (the fraction of females that fail to reproduce before death occurs) produces an estimate of mortality due to natural causes. Because in the pond predation was insignificant, postembryonic culture mortality provides a reasonable estimate of field mortality due to natural causes as well. When postembryonal culture mortality is substracted from culture birth rates, a net rate of population increase somewhat lower than that in the pond is observed. Because of strong temperature effects, this transfer of culture data to field conditions strictly applies only to early summer conditions: an expandingScapholeberis population, and fairly constant field temperatures close to the temperature optimum of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号