首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
α-Amanitin insensitive RNA polymerase (polymerase I isolated from apical parts of the cauliflower inflorescence was highly stable for several months at − 18°. The DEAE-cellulose fraction was more effective in utilizing denatured DNA than native DNA as a template. Optimum pH for RNA synthesis was ca 7 in the reaction mixture with Tris-HCl or with Tris-maleate buffer. From the properties examined, it seems that DNA-dependent RNA polymerase I of cauliflower differs from other eucaryotic RNA polymerases.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Molecular Genetics and Genomics - Macromolecular synthesis in an Escherichia coli mutant with a temperature-sensitive β′ subunit of RNA polymerase was analysed. At the non-permissive...  相似文献   

17.
CHO hybrid cell lines obtained by fusing cells of wild-type sensitivity to α-amanitin with mutant cells containing RNA polymerase II activity resistant to α-amanitin have both sensitive (wild-type) and resistant forms of RNA polymerase II. When these hybrids were grown in medium containing α-amanitin, the sensitive form of polymerase II was inactivated, and the activity resistant to α-amanitin increased proportionally. The total polymerase II activity level therefore remained constant. This regulation of RNA polymerase II activity occurred independently of that of RNA polymerase I and was similar to that observed previously in the α-amanitin-resistant rat myoblast mutant clone Ama102 (Somers, Pearson, and Ingles, 1975).A sensitive radioimmunoassay was developed to quantitate the total mass of RNA polymerase II enzyme. Under conditions of regulation of the enzymatic activity when hybrids grown in α-amanitin exhibited a 2–3 fold increase in the activity of the α-amanitin-resistant enzyme, no major change in the enzyme mass was detected immunologically. However, quantitation of the α-amanitin-inactivated polymerase II of wild-type sensitivity by 3H-amanitin binding indicated that the loss of its enzymic activity was accompanied by a loss of 3H-amanitin binding capacity in the cell lysates. All these results taken together indicate that a mechanism for regulating the intracellular level of RNA polymerase II exists and that it involves changes in the concentration of enzyme.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号