首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been considerable interest in the biological functions of astaxanthin and its potential applications in the nutraceutical, cosmetics, food, and feed industries in recent years. However, the unstable structure of astaxanthin considerably limits its application. Therefore, this study reports the encapsulation of astaxanthin in calcium alginate beads using the extrusion method to improve its stability. This study also evaluates the stability of the encapsulated astaxanthin under different storage conditions. The evaluation of astaxanthin stability under various environmental factors reveals that temperature is the most influential environmental factor in astaxanthin degradation. Stability analysis shows that, regardless of the formulation used, the content of astaxanthin encapsulated in alginate beads remains above 90% of the original amount after 21 days of storage at 25°C. These results suggest that the proposed technique is a promising way to enhance the stability of other sensitive compounds.  相似文献   

2.
Watermelon (Citrullus vulgaris) urease was immobilized in 3.5% alginate leading to 72% immobilization. There was no leaching of the enzyme over a period of 15 days at 4°C. It continued to hydrolyse urea at a faster rate upto 90 min of incubation. The immobilized urease exhibited a shift of apparent pH optimum by one unit towards acidic side (from pH 8.0 to 7.0). The Km was found to be 13.3 mM; 1.17 times higher than the soluble enzyme (11.4 mM). The beads were fairly stable upto 50°C and exhibited activity even at ?10°C. The enzyme was significantly activated by ME and it exhibited two peaks of activation; one at lower concentration and another at higher concentration. Time-dependent ureolysis in presence of ME progressed at a much elevated rate. Unlike soluble enzyme, which was inhibited at 200 mM urea, the immobilized enzyme was inhibited at 600 mM of urea and above, and about 47% activity was retained at 2000 mM urea. Moreover, the inhibition caused by high urea concentration was partially abolished by ME. The significance of the observations is discussed.  相似文献   

3.
The effect of simultaneous modification of medium composition and growth conditions on the production of Lactococcus lactis subsp. cremoris biomass in calcium alginate beads was studied by the response surface method. Statistical methods of data analysis for unbalanced experiments are illustrated. The media tested were whey, whey supplemented with yeast extract and/or meat extract, milk, and the commercial medium Gold Complete (Nordica). Fermentations were performed at 23°C under pH control (5.6, 6.0, 6.4, or 6.8). In one complete series, 1% CaCO3 was added to the growth media. There were strong interactions between CaCO3 and media, CaCO3 and pH level, and CaCO3, media, and pH level. In media with CaCO3, all first-order interactions between media, pH, and sampling time were significant. The addition of CaCO3 increased cell counts in whey-meat extract medium, but no significant difference was found with the other media. Uncoupling between growth and acidification occurred between 16 and 22 h. Highest counts were obtained on milk and Gold Complete (6 × 1010/g). In CaCO3-containing media, pH influenced cell counts only in whey and in Gold Complete (pH 5.6 and 6.0 giving the best results); pH also influenced the bead mass obtained at the end of the fermentation. Biomass production in alginate gels is proposed as a method of obtaining concentrated cell suspensions without centrifugation or filtration.  相似文献   

4.
具有佐剂效果的海藻酸钙纳米胶囊制备   总被引:2,自引:1,他引:2  
利用海藻酸多糖酸沉淀性质并结合乳化技术,本研究开发了一种酸沉淀诱导相变制备海藻酸钙纳米胶囊的新颖方法,并通过改变海藻酸钠溶液和表面活性剂浓度获得了最小平均水动力学直径在300 nm以下的球形凝胶颗粒,粒径分布均一,表面呈负电性。细胞培养实验结果表明,该海藻酸钙纳米胶囊对人外周血来源未成熟树突状细胞的成熟有与肿瘤坏死因子?(TNF-?)和细菌脂多糖(LPS)相当效力的刺激作用。蛋白质分子可通过共价偶联方式负载。该海藻酸钙纳米胶囊在新型疫苗设计、细胞治疗和靶向给药等方面具有重要的应用潜力。  相似文献   

5.
Bifidobacterium longum KCTC 3128 and HLC 3742 were independently immobilized (entrapped) in calcium alginate beads containing 2, 3, and 4% sodium alginate. When the bifidobacteria entrapped in calcium alginate beads were exposed to simulated gastric juices and a bile salt solution, the death rate of the cells in the beads decreased proportionally with an increase in both the alginate gel concentration and bead size. The initial cell numbers in the beads affected the numbers of survivors after exposure to these solutions; however, the death rates of the viable cells were not affected. Accordingly, a mathematical model was formulated which expressed the influences of several parameters (gel concentration, bead size, and initial cell numbers) on the survival of entrapped bifidobacteria after sequential exposure to simulated gastric juices followed by a bile salt solution. The model proposed in this paper may be useful for estimating the survival of bifidobacteria in beads and establishing optimal entrapment conditions.  相似文献   

6.
3D printing has made remarkable progress in soft tissue reconstruction enabling the custom design of complex material implants with patient specific geometry.Th...  相似文献   

7.
In this paper, we study the rehydration properties of air-dried calcium alginate gel beads. Rehydration is shown to depend on alginate source (i.e. mannuronic to guluronic acid ratio) and the salt concentration in the rehydration medium. Rehydration curves are described adequately by the empirical Weibull equation. Wide-angle X-ray diffraction measurements are performed to obtain information on the microstructure of dried alginate gels. The X-ray diffraction patterns provide evidence for formation of ordered domains in which alginate polymers are laterally associated. Formation of ordered structures during drying is found to have a large impact on rehydration properties. Lateral association of alginate chains is reduced (and rehydration improved) by removing excess calcium ions from the gel beads in a washing step prior to air drying. In addition, rehydration properties of mixed alginate–carboxymethyl cellulose (CMC) gel beads are investigated. The presence of CMC in the gel matrix is found to reduce lateral association of alginate chains during drying and to improve rehydration properties.  相似文献   

8.
Sodium alginate oligosaccharides (NaAOs) consisting of a mixture of eight oligosaccharides have previously been reported to lower blood pressure. We investigated in this study the excretion of NaAOs into the urine or feces, and attempted to elucidate the mechanism for lowering blood pressure by using isolated mesenteric arteries from the rabbit. The recovery rate of P8, which is the main component of NaAOs, was 5.2% and 58.9% over 48 hours in the urine and feces, respectively. The mechanism for lowering blood pressure appeared to be NaAOs having calcium antagonist activity, especially voltage-operated calcium channels. Our results suggest that NaAOs are substantially excreted into the feces, although some of them may be absorbed internally, exerting antagonist activity towards the calcium channels, especially voltage-operated calcium channels.  相似文献   

9.
Encapsulation in alginate hydrogels has been extensively used for several applications in food, pharmaceutical, and biomedical fields. The rational design of a functional polymer network is based on the identification of key parameters and mechanisms governing rate and extent of release of the immobilized molecular species. In the present work, a calorimetric study of the water evaporation under non-isothermal conditions is aimed at evaluating functional properties of a series of alginate-based gel beads. The experiments show how a number of variables, such as scan rate, calcium and alginate concentration, operational procedures, and addition of biopolymer co-solutes influence the temperature evolution of the water evaporation from beads. Given the simplicity and the rapidity of the calorimetric experiment, the issue is raised that a scaling approach could be reached by using water as reference material for the prediction of the diffusion kinetics of encapsulated molecules of variable size and properties.  相似文献   

10.
The purpose of this study is to determine whether sodium alginate solutions’ rheological parameters are meaningful relative to sodium alginate’s use in the formulation of calcium alginate gels. Calcium alginate gels were prepared from six different grades of sodium alginate (FMC Biopolymer), one of which was available in ten batches. Cylindrical gel samples were prepared from each of the gels and subjected to compression to fracture on an Instron Universal Testing Machine, equipped with a 1-kN load cell, at a cross-head speed of 120 mm/min. Among the grades with similar % G, (grades 1, 3, and 4), there is a significant correlation between deformation work (L E) and apparent viscosity (η app). However, the results for the partial correlation analysis for all six grades of sodium alginate show that L E is significantly correlated with % G, but not with the rheological properties of the sodium alginate solutions. Studies of the ten batches of one grade of sodium alginate show that η app of their solutions did not correlate with L E while tan δ was significantly, but minimally, correlated to L E. These results suggest that other factors—polydispersity and the randomness of guluronic acid sequencing—are likely to influence the mechanical properties of the resultant gels. In summary, the rheological properties of solutions for different grades of sodium alginate are not indicative of the resultant gel properties. Inter-batch differences in the rheological behavior for one specific grade of sodium alginate were insufficient to predict the corresponding calcium alginate gel’s mechanical properties.  相似文献   

11.
Pereda  Mariana  Poncelet  Denis  Renard  Denis 《Food biophysics》2019,14(4):467-478
Food Biophysics - A new droplets millifluidic/inverse gelation based process was used to produce core-shell alginate milli-capsules. Water-in-oil (W/O) emulsion dispersed phase containing Ca2+ ions...  相似文献   

12.
Alginate (ALG) is a lineal hydrophilic polysaccharide present in brown algae cell walls, which turns into a gel state when hydrated. Gelation readily produces a series of three dimensional (3D) architectures like fibers, capillaries, and microspheres, used as biosensors and bio‐actuators in a plethora of biomedical applications like drug delivery and wound healing. Hydrogels have made a great impact on regenerative medicine and tissue engineering because they are able to mimic the mechanical properties of natural tissues due to their high water content. Recent advances in neurosciences have led to promising strategies for repairing and/or regenerating the damaged nervous system. Spinal cord injury (SCI) is particularly challenging, owing to its devastating medical, human, and social consequences. Although effective therapies to repair the damaged spinal cord (SC) are still lacking, multiple pharmacological, genetic, and cell‐based therapies are currently under study. In this framework, ALG hydrogels constitute a source of potential tools for the development of implants capable of promoting axonal growth and/or delivering cells or drugs at specific damaged sites, which may result in therapeutic strategies for SCI. In this mini‐review, the current state of the art of ALG applications in neural tissues for repairing the damaged spinal cord is discussed.  相似文献   

13.
目的:制备骨形成蛋白2/珍珠层粉/壳聚糖复合多孔支架,观察支架生物性能。方法:采用冷冻干燥法制备骨形成蛋白2/珍珠层粉/壳聚糖多孔支架。用光学显微镜和扫描电子显微镜观察支架表面形貌及孔径大小,用比重瓶法检测支架孔隙率,热重分析探讨支架的热稳定性,用微力试验机进行压缩性能测试,并将支架与兔骨髓间充质干细胞共培养检测细胞黏附性能,将支架埋置大鼠皮下观察其炎症反应。结果与结论:制备的骨形成蛋白2/珍珠层粉/壳聚糖支架孔径大小为100~300μm,孔隙率为91.64%,压缩应力达3.37MPa,与细胞共培养贴附较好,有良好的组织相容性,提示该支架可做为组织工程支架材料应用于临床上骨组织缺损的修复。  相似文献   

14.
褐藻胶寡糖(alginate oligosaccharides,AOS)是褐藻胶降解而形成的一种功能性寡糖,具有广泛的生物活性,如促进植物生长、提高植物抗逆性、抗氧化、抗菌、抗肿瘤等。褐藻胶寡糖的制备方法主要分为:化学法、物理法和酶解法。不同的方法制备出的褐藻胶寡糖结构亦有所不同。介绍了化学法、物理法和酶解法等各种褐藻胶寡糖制备方法的研究现状、存在的问题及发展趋势。  相似文献   

15.
Silver nanoclusters growth in AR Schott glass was investigated by transmission electron microscopy (TEM) and optical absorption. The studied samples were Ag–Na ion-exchanged and annealed at ambient air in a furnace. Optical absorption was performed to visualize the size effect on the spectra and compared to the Drude model. TEM was used to evaluate the distribution size of the silver particles so as to confirm the precipitation of the metallic nano-aggregates, to observe their morphological evolution with time, and to correlate it to the absorption curves which makes the interest and the aim of this study. The TEM observations prove that we are in a confinement regime with a particle size below the mean free path of the bulk metal. Growth of the clusters is ascribed first to the diffusion of the silver ions due to annealing and in a second time to an Oswald process.  相似文献   

16.
17.
Jack bean urease has been immobilized on arylamine glass beads (200–400 mesh size, 75–100 Å pore size) and its properties compared with soluble enzyme. The binding of urease was 13.71 mg per gram beads. The Km for soluble and immobilized urease for urea was 4.20 mM and 8.81 mM, respectively. Vmax values of urease decreased from 200 to 43.48 μmol of ammonia formed per min per mg protein at 37°C on immobilization. Both pH and buffer ions influenced the activities of soluble as well as immobilized urease. Soluble urease exhibited pH optima at 5.5 and 8.0. However, immobilized urease showed one additional pH optimum at 6.5. In comparison to phosphate buffer, citrate buffer was inhibitory to urease activity. Immobilization of urease on arylamine glass beads resulted in improved thermal, storage and operational stability. Because of inertness of support and stability of immobilized urease, the preparation can find applications in ‘artificial kidney’ and urea estimation in biological fluids viz., blood, milk etc.  相似文献   

18.
Uniform synthetic beads were developed as carriers for the bacterial inoculation of plants. The beads are made of sodium alginate and skim milk and contain a large reservoir of bacterial culture which releases the bacteria at a slow and constant rate. The beads are biodegradable and produce no environmental pollution. The strength of the beads, the rate of bacterial release, and the time of their survival in the soil can be controlled by several hardening treatments. The final product, lyophilized beads, is simple to use and is applied to the seeds concomitantly with sowing. The released bacteria are available for root colonization immediately at seed germination. Dry beads containing bacteria can be stored at ambient temperature over a long period without loss of bacterial content; storage requires a limited space, and the quality control of a number of bacteria in the bead is simple. The level of plant inoculation with beads was similar to that with previously used peat inoculants, but the former method yielded more consistent results, as the frequency of inoculated plants was much higher. The former method provides a different approach for inoculation of plants with beneficial rhizosphere bacteria.  相似文献   

19.
褐藻寡糖(alginate oligosaccharides,AOS)是褐藻胶的降解产物,具有抗氧化、调节免疫、调节血脂、促进细胞生长等生理活性,应用范围广泛。现有的AOS 制备法主要分为物理法、化学法和生物法。介绍AOS的生物法制备包括酶解、微生物全细胞发酵和生物合成法,基因工程的应用在改造产褐藻胶裂解酶的菌株以提高生物法效率方面具有重要意义。此外,规模化的AOS生物法制备案例进行了科学引证,并展望了未来 AOS规模化制备的发展方向,以期为 AOS 的工业化制备和应用提供参考。  相似文献   

20.
In this study, two different biomaterials were fabricated and their potential use as a bilayer scaffold for skin tissue engineering applications was assessed. The upper layer biomaterial was a Poly(ε-caprolactone-co-lactide)/Poloxamer (PLCL/Poloxamer) nanofiber membrane fabricated using electrospinning technology. The PLCL/Poloxamer nanofibers (PLCL/Poloxamer, 9/1) exhibited strong mechanical properties (stress/strain values of 9.37±0.38 MPa/187.43±10.66%) and good biocompatibility to support adipose-derived stem cells proliferation. The lower layer biomaterial was a hydrogel composed of 10% dextran and 20% gelatin without the addition of a chemical crosslinking agent. The 5/5 dextran/gelatin hydrogel displayed high swelling property, good compressive strength, capacity to present more than 3 weeks and was able to support cells proliferation. A bilayer scaffold was fabricated using these two materials by underlaying the nanofibers and casting hydrogel to mimic the structure and biological function of native skin tissue. The upper layer membrane provided mechanical support in the scaffold and the lower layer hydrogel provided adequate space to allow cells to proliferate and generate extracellular matrix. The biocompatibility of bilayer scaffold was preliminarily investigated to assess the potential cytotoxicity. The results show that cell viability had not been affected when cocultured with bilayer scaffold. As a consequence, the bilayer scaffold composed of PLCL/Poloxamer nanofibers and dextran/gelatin hydrogels is biocompatible and possesses its potentially high application prospect in the field of skin tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号