首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetically-responsive nano/micro-engineered biomaterials that enable a tightly controlled, on-demand drug delivery have been developed as new types of smart soft devices for biomedical applications. Although a number of magnetically-responsive drug delivery systems have demonstrated efficacies through either in vitro proof of concept studies or in vivo preclinical applications, their use in clinical settings is still limited by their insufficient biocompatibility or biodegradability. Additionally, many of the existing platforms rely on sophisticated techniques for their fabrications. We recently demonstrated the fabrication of biodegradable, gelatin-based thermo-responsive microgel by physically entrapping poly(N-isopropylacrylamide-co-acrylamide) chains as a minor component within a three-dimensional gelatin network. In this study, we present a facile method to fabricate a biodegradable drug release platform that enables a magneto-thermally triggered drug release. This was achieved by incorporating superparamagnetic iron oxide nanoparticles and thermo-responsive polymers within gelatin-based colloidal microgels, in conjunction with an alternating magnetic field application system.  相似文献   

2.
Diffuse intrinsic pontine gliomas (DIPGs) represent a particularly lethal type of pediatric brain cancer with no effective therapeutic options. Our laboratory has previously reported the development of genetically engineered DIPG mouse models using the RCAS/tv-a system, including a model driven by PDGF-B, H3.3K27M, and p53 loss. These models can serve as a platform in which to test novel therapeutics prior to the initiation of human clinical trials. In this study, an in vitro high-throughput drug screen as part of the DIPG preclinical consortium using cell-lines derived from our DIPG models identified BMS-754807 as a drug of interest in DIPG. BMS-754807 is a potent and reversible small molecule multi-kinase inhibitor with many targets including IGF-1R, IR, MET, TRKA, TRKB, AURKA, AURKB. In vitro evaluation showed significant cytotoxic effects with an IC50 of 0.13 μM, significant inhibition of proliferation at a concentration of 1.5 μM, as well as inhibition of AKT activation. Interestingly, IGF-1R signaling was absent in serum-free cultures from the PDGF-B; H3.3K27M; p53 deficient model suggesting that the antitumor activity of BMS-754807 in this model is independent of IGF-1R. In vivo, systemic administration of BMS-754807 to DIPG-bearing mice did not prolong survival. Pharmacokinetic analysis demonstrated that tumor tissue drug concentrations of BMS-754807 were well below the identified IC50, suggesting that inadequate drug delivery may limit in vivo efficacy. In summary, an unbiased in vitro drug screen identified BMS-754807 as a potential therapeutic agent in DIPG, but BMS-754807 treatment in vivo by systemic delivery did not significantly prolong survival of DIPG-bearing mice.  相似文献   

3.
Protein transduction domains (PTDs) are short amino acid sequences that promote their own translocation across the cell plasma membrane and have been studied for possible use in drug delivery and gene therapy. However, no direct method to quantify transduction is available. Here, using a new luciferase-tagged human PTD, we show that cellular uptake levels can be determined in a reliable manner. Furthermore, we show that enhanced in vivo tracking by human PTD can be quantified in a mouse model. This is the first report on the direct quantification of PTD transduction in vitro and in vivo, which will be necessary for studying its possible therapeutic application in drug delivery and gene therapy.  相似文献   

4.
A multiunit floating drug delivery system of rosiglitazone maleate has been developed by encapsulating the drug into Eudragit® RS100 through nonaqueous emulsification/solvent evaporation method. The in vitro performances of microspheres were evaluated by yield (%), particle size analysis, drug entrapment efficiency, in vitro floating behavior, surface topography, drug–polymer compatibility, crystallinity of the drug in the microspheres, and drug release studies. In vitro release was optimized by a {3, 3} simplex lattice mixture design to achieve predetermined target release. The in vivo performance of the optimized formulation was evaluated in streptozotocin-induced diabetic rats. The results showed that floating microspheres could be successfully prepared with good yields (69–75%), high entrapment (78-97%), narrow size distribution, and desired target release with the help of statistical design of experiments from very small number of formulations. In vivo evaluation in albino rats suggested that floating microspheres of rosiglitazone could be a promising approach for better glycemic control.  相似文献   

5.
Historically, the focus has been to use in vitro BBB models to optimize rate of drug delivery to the CNS, whereas total in vivo brain/plasma ratios have been used for optimizing extent. However, these two parameters do not necessarily show good correlations with receptor occupancy data or other pharmacological readouts. In line with the free drug hypothesis, the use of unbound brain concentrations (Cu,br) has been shown to provide the best correlations with pharmacological data. However, typically the determination of this parameter requires microdialysis, a technique not ideally suited for screening in early drug development. Alternative, and less resource-demanding methodologies to determine Cu,br employ either equilibrium dialysis of brain homogenates or incubations of brain slices in buffer to determine fraction unbound brain (fu,br), which is subsequently multiplied by the total brain concentration to yield Cu,br. To determine Cu,br/Cu,pl ratios this way, still requires both in vitro and in vivo experiments that are quite time consuming. The main objective of this study was to explore the possibility to directly generate Cu,br/Cu,pl ratios in a single in vitro model of the BBB, using a co-culture of brain capillary endothelial and glial cells in an attempt to mimick the in vivo situation, thereby greatly simplifying existing experimental procedures. Comparison to microdialysis brain concentration profiles demonstrates the possibility to estimate brain exposure over time in the BBB model. A stronger correlation was found between in vitro Cu,br/Cu,pl ratios and in vivo Cu,br/Cu,pl obtained using fu,br from brain slice than with fu,br from brain homogenate for a set of 30 drugs. Overall, Cu,br/Cu,pl ratios were successfully predicted in vitro for 88% of the 92 studied compounds. This result supports the possibility to use this methodology for identifying compounds with a desirable in vivo response in the CNS early on in the drug discovery process.  相似文献   

6.
To examine the mechanisms of drug relapse, we first established a model for cocaine IVSA (intravenous self-administration) in mice, and subsequently examined electrophysiological alterations of MSNs (medium-sized spiny neurons) in the NAc (nucleus accumbens) before and after acute application of cocaine in slices. Three groups were included: master mice trained by AL (active lever) pressings followed by IV (intravenous) cocaine delivery, yoked mice that received passive IV cocaine administration initiated by paired master mice, and saline controls. MSNs recorded in the NAc shell in master mice exhibited higher membrane input resistances but lower frequencies and smaller amplitudes of sEPSCs (spontaneous excitatory postsynaptic currents) compared with neurons recorded from saline control mice, whereas cells in the NAc core had higher sEPSCs frequencies and larger amplitudes. Furthermore, sEPSCs in MSNs of the shell compartment displayed longer decay times, suggesting that both pre- and postsynaptic mechanisms were involved. After acute re-exposure to a low-dose of cocaine in vitro, an AP (action potential)-dependent, persistent increase in sEPSC frequency was observed in both NAc shell and core MSNs from master, but not yoked or saline control mice. Furthermore, re-exposure to cocaine induced membrane hyperpolarization, but concomitantly increased excitability of MSNs from master mice, as evidenced by increased membrane input resistance, decreased depolarizing current to generate APs, and a more negative Thr (threshold) for firing. These data demonstrate functional differences in NAc MSNs after chronic contingent versus non-contingent IV cocaine administration in mice, as well as synaptic adaptations of MSNs before and after acute re-exposure to cocaine. Reversing these functional alterations in NAc could represent a rational target for the treatment of some reward-related behaviors, including drug addiction.  相似文献   

7.
《Phytomedicine》2014,21(3):307-314
Berberine, an isoquinoline alkaloid, has wide biological and pharmacological actions. Despite the promising pharmacological effects and safety of berberine, poor oral absorption due to its extremely low aqueous solubility results in poor oral systemic bioavailability. This limits its clinical usage. This study describes the development and characterization of self-nanoemulsifying drug delivery system (SNEDDS) of berberine in liquid as well as solid form with improved solubility, dissolution and in vivo therapeutic efficacy. The SNEDDS of berberine were prepared using Acrysol K-150, Capmul MCM and polyethylene glycol 400. The formulations were characterized for various in vitro physicochemical characteristics. In vivo efficacy was evaluated in acetic acid induced inflammatory bowel model in rats. Anti-angiogenic activity of the developed SNEDDS of berberine was studied using chick chorioallantoic membrane assay. SNEDDS of berberine rapidly formed nanoemulsions with globule size of 17–45 nm. The in vitro rate and extent of release of berberine from SNEDDS was significantly higher than berberine alone. Chick chorioallantoic membrane assay revealed potent anti-angiogenic activity of SNEDDS of berberine. These studies demonstrate that the SNEDDS of berberine is a promising strategy for improving its therapeutic efficacy and have potential application in the treatment of chronic inflammatory conditions and cancer.  相似文献   

8.
While 3-D tissue models have received increasing attention over the past several decades in the development of traditional anti-cancer therapies, their potential application for the evaluation of advanced drug delivery systems such as nanomedicines has been largely overlooked. In particular, new insight into drug resistance associated with the 3-D tumor microenvironment has called into question the validity of 2-D models for prediction of in vivo anti-tumor activity. In this work, a series of complementary assays was established for evaluating the in vitro efficacy of docetaxel (DTX) -loaded block copolymer micelles (BCM+DTX) and Taxotere® in 3-D multicellular tumor spheroid (MCTS) cultures. Spheroids were found to be significantly more resistant to treatment than monolayer cultures in a cell line dependent manner. Limitations in treatment efficacy were attributed to mechanisms of resistance associated with properties of the spheroid microenvironment. DTX-loaded micelles demonstrated greater therapeutic effect in both monolayer and spheroid cultures in comparison to Taxotere®. Overall, this work demonstrates the use of spheroids as a viable platform for the evaluation of nanomedicines in conditions which more closely reflect the in vivo tumor microenvironment relative to traditional monolayer cultures. By adaptation of traditional cell-based assays, spheroids have the potential to serve as intermediaries between traditional in vitro and in vivo models for high-throughput assessment of therapeutic candidates.  相似文献   

9.
Breast cancer is the second leading cause of cancer-related deaths in women. Ligand-modified liposomes are used for breast tumor-specific drug delivery to improve the efficacy and reduce the side effects of chemotherapy; however, only a few liposomes with high targeting efficiency have been developed because the mono-targeting, ligand-modified liposomes are generally unable to deliver an adequate therapeutic dose. In this study, we designed biotin-glucose branched ligand-modified, dual-targeting liposomes (Bio-Glu-Lip) and evaluated their potential as a targeted chemotherapy delivery system in vitro and in vivo. When compared with the non-targeting liposome (Lip), Bio-Lip, and Glu-Lip, Bio-Glu-Lip had the highest cell uptake in 4T1 cells (3.00-fold, 1.60-fold, and 1.95-fold higher, respectively) and in MCF-7 cells (2.63-fold, 1.63-fold, and 1.85-fold higher, respectively). The subsequent cytotoxicity and in vivo assays further supported the dual-targeting liposome is a promising drug delivery carrier for the treatment of breast cancer.  相似文献   

10.
A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.  相似文献   

11.
Poor oral bioavailability is the single most important challenge in drug delivery. Prominent among the factors responsible for this is metabolic activity of the intestinal and hepatic cytochrome P450 (CYP450) enzymes. In preliminary studies, it was demonstrated that 8-arm-PEG was able to inhibit the felodipine metabolism. Therefore, this report investigated the oral bioavailability-enhancing property of 8-arm-PEG employing detailed in vitro, in vivo, and in silico evaluations. The in vitro metabolism of felodipine by cytochrome P450 3A4-expressed human liver microsomes (HLM) was optimized yielding a typical Michaelis–Menten plot through the application of Enzyme Kinetic Module software from where the enzyme kinetic parameters were determined. In vitro investigation of 8-arm-poly(ethylene glycol) against CYP3A4-catalyzed felodipine metabolism employing human liver microsomes compared closely with naringenin, a typical grapefruit flavonoid, yielding IC50 values of 7.22 and 121.97 μM, respectively. The investigated potential of 8-arm-poly(ethylene glycol) in oral drug delivery yielded satisfactory in vitro drug release results. The in vivo studies of the effects of 8-arm-poly(ethylene glycol) on the oral bioavailability of felodipine as performed in the Large White pig model showed a >100% increase in plasma felodipine levels compared to controls, with no apparent effect on systemic felodipine clearance. The outcome of this research presents a novel CYP3A4 inhibitor, 8-arm-poly(ethylene glycol) for oral bioavailability enhancement.  相似文献   

12.
The striatum is predominantly composed of medium spiny neurons (MSNs) that send their axons along two parallel pathways known as the direct and indirect pathways. MSNs from the direct pathway express high levels of D1 dopamine receptors, while MSNs from the indirect pathway express high levels of D2 dopamine receptors. There has been much debate over the extent of colocalization of these two major dopamine receptors in MSNs of adult animals. In addition, the ontogeny of the segregation process has never been investigated. In this paper, we crossed bacterial artificial chromosome drd1a-tdTomato and drd2-GFP reporter transgenic mice to characterize these models and estimate D1-D2 co-expression in the developing striatum as well as in striatal primary cultures. We show that segregation is already extensive at E18 and that the degree of co-expression further decreases at P0 and P14. Finally, we also demonstrate that cultured MSNs maintain their very high degree of D1-D2 reporter protein segregation, thus validating them as a relevant in vitro model.  相似文献   

13.
Etoposide-loaded poly(lactic-co-glycolic acid) implants were developed for intravitreal application. Implants were prepared by a solvent-casting method and characterized in terms of content uniformity, morphology, drug-polymer interaction, stability, and sterility. In vitro drug release was investigated and the implant degradation was monitored by the percent of mass loss. Implants were inserted into the vitreous cavity of rabbits’ eye and the in vivo etoposide release profile was determined. Clinical examination and the Hen Egg Test-Chorioallantoic Membrane (HET-CAM) method were performed to evaluate the implant tolerance. The original chemical structure of the etoposide was preserved after incorporation in the polymeric matrix, which the drug was dispersed uniformly. In vitro, implants promoted sustained release of the drug and approximately 57% of the etoposide was released in 50 days. In vivo, devices released approximately 63% of the loaded drug in 42 days. Ophthalmic examination and HET-CAM assay revealed no evidence of toxic effects of implants. These results tend to show that etoposide-loaded implants could be potentially useful as an intraocular etoposide delivery system in the future.  相似文献   

14.
During the past years, great progress has been made in the field of nanomaterials given their great potential in biomedical applications. Carbon nanotubes (CNTs), due to their unique physicochemical properties, have become a popular tool in cancer diagnosis and therapy. They are considered one of the most promising nanomaterials with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to these cells. Over the last several years, CNTs have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, thermal therapy, photodynamic therapy, and gene therapy. In this review, we will show how they have been introduced into the diagnosis and treatment of cancer. Novel SWNT-based tumor-targeted drug delivery systems (DDS) will be highlighted. Furthermore, the in vitro and in vivo toxicity of CNTs reported in recent years will be summarized.  相似文献   

15.
DNA vaccines offer advantage over conventional vaccines, as they are safer to use, easier to produce, and able to induce humoral as well cellular immune responses. Unfortunately, no DNA vaccines have been licensed for human use for the difficulties in developing an efficient and safe in vivo gene delivery system. In vivo electroporation (EP)-based DNA delivery has attracted great attention for its potency to enhance cellular uptake of DNA vaccines and function as an adjuvant. Minicircle DNA (a new form of DNA containing only a gene expression cassette and lacking a backbone of bacterial plasmid DNA) is a powerful candidate of gene delivery in terms of improving the levels and the duration of transgene expression in vivo. In this study, as a novel vaccine delivery system, we combined in vivo EP and the minicircle DNA carrying a codon-optimized HIV-1 gag gene (minicircle-gag) to evaluate the immunogenicity of this system. We found that minicircle-gag conferred persistent and high levels of gag expression in vitro and in vivo. The use of EP delivery further increased minicircle-based gene expression. Moreover, when delivered by EP, minicircle-gag vaccination elicited a 2- to 3-fold increase in cellular immune response and a 1.5- to 3-fold augmentation of humoral immune responses compared with those elicited by a pVAX1-gag positive control. Increased immunogenicity of EP-assisted minicircle-gag may benefit from increasing local antigen expression, upregulating inflammatory genes, and recruiting immune cells. Collectively, in vivo EP of minicircle DNA functions as a novel vaccine platform that can enhance efficacy and immunogenicity of DNA vaccines.  相似文献   

16.
Recently, inhaled immunosuppressive agents have attracted increasing attention for maintenance therapy following lung transplantation. The rationale for this delivery approach includes a more targeted and localized delivery to the diseased site with reduced systemic exposure, potentially leading to decreased adverse side effects. In this study, the in vitro and in vivo performance of an amorphous formulation prepared by thin film freezing (TFF) and a crystalline micronized formulation produced by milling was compared for tacrolimus (TAC). Despite the relatively large geometric size, the TFF-processed formulation was capable of achieving deep lung delivery due to its low-density, highly porous, and brittle characteristics. When emitted from a Miat® monodose inhaler, TFF-processed TAC formulations exhibited a fine particle fraction (FPF) of 83.3% and a mass median aerodynamic diameter (MMAD) of 2.26 μm. Single-dose 24-h pharmacokinetic studies in rats demonstrated that the TAC formulation prepared by TFF exhibited higher pulmonary bioavailability with a prolonged retention time in the lung, possibly due to decreased clearance (e.g., macrophage phagocytosis), compared to the micronized TAC formulation. Additionally, TFF formulation generated a lower systemic TAC concentration with smaller variability than the micronized formulation following inhalation, potentially leading to reduced side effects related to the drug in systemic circulation.  相似文献   

17.
Poly(ε-caprolactone) implants containing etoposide, an important chemotherapeutic agent and topoisomerase II inhibitor, were fabricated by a melt method and characterized in terms of content uniformity, morphology, drug physical state, and sterility. In vitro and in vivo drug release from the implants was also evaluated. The cytotoxic activity of implants against HeLa cells was studied. The short-term tolerance of the implants was investigated after subcutaneous implantation in mice. The original chemical structure of etoposide was preserved after incorporation into the polymeric matrix, in which the drug was dispersed uniformly. Etoposide was present in crystalline form in the polymeric implant. In vitro release study showed prolonged and controlled release of etoposide, which showed cytotoxicity activity against HeLa cells. After implantation, good correlation between in vitro and in vivo drug release was found. The implants demonstrated good short-term tolerance in mice. These results tend to show that etoposide-loaded implants could be potentially applied as a local etoposide delivery system.  相似文献   

18.
Colonic drug delivery is intended not only for local treatment in inflammatory bowel disease (IBD) but also for systemic delivery of therapeutics. Intestinal myeloperoxidase (MPO) determination could be used to estimate the average level of inflammation in colon as well as to determine the efficacy of drugs to be used in the treatment of inflammatory bowel diseases or study the specificity of dosage forms to be used for colonic targeting of anti-inflammatory drugs. Colonic prodrug sulfasalazine (SASP) gets metabolized to give 5-aminosalicylic acid (5-ASA), which is the active portion of SASP. However, when given orally, 5-ASA is absorbed in upper part of gastrointestinal tract (GIT) and not made available in colon. In the present study, colon-targeted delivery of 5-ASA was achieved by formulating tablets with two natural polymers namely guar gum and pectin using compression coating method. Colonic specificity of 5-ASA tablets (prepared using guar gum and pectin as polymers) was evaluated in vitro using simulated fluids mimicking in vivo environment as well as in vivo method using chemically (2,4,6-trinitrobenzenesulfonic acid and acetic acid)-induced colitis rat model. Both colon-specific formulations of 5-ASA (guar gum and pectin) were observed to be more effective in reducing inflammation in chemically induced colitis rat models when compared to colon-specific prodrug sulfasalazine as well as conventional 5-ASA administered orally.KEY WORDS: colitis, colon-specific drug delivery, myeloperoxidase  相似文献   

19.
Mesoporous silica nanoparticles (MSNs) with large surface area, tunable pore size, and low toxicity can act as suitable vehicles for drug and gene delivery. An MSN/DNA/PEI complex delivery system was prepared by using MSNs to hold plasmid DNA coated with polyethyleneimine (PEI), and the dry powder formulation was produced by freeze-drying with trehalose as lyoprotectant. The MSN/DNA/PEI complexes successfully enhanced the gene expression with about 1.5-fold higher efficiency as compared with the control, and even better effects and lower toxicity were achieved at lower content of PEI. Also, this gene delivery system showed nearly sixfold higher efficiency in the serum-containing condition than the control, so further application of these vehicles in vivo is highly appreciated. Besides, the trehalose containing lyophilized formulation could hold the availability for at least 4 months of storing at room temperature, presenting the potential for industrial production and transportation of gene therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号