首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
基因治疗研究中脂质体介导的基因转移技术   总被引:2,自引:0,他引:2  
对于脂质体的深入研究特别是阳离子脂质体的研制使其逐步成为重要的基因转移载体之一,并且初步应用于基因治疗研究,同时多种靶向脂质体的研制也为体内靶向基因转移和表达奠定了基础。本文就脂质体的结构、功能、在基因治疗研究中的应用以及各种靶向脂质体的研制进行了介绍。  相似文献   

3.
4.
基因治疗中外源基因的导入   总被引:1,自引:0,他引:1  
基因治疗是将遗传物质导入靶细胞以达到治疗疾病的目的,目前基因治疗研究中的主要障碍是如何格外源基因导入靶细胞。本介绍基因治疗的原理和外源基因导入靶细胞时的常用方法,包括显微注射法、电穿孔法、基因枪粒子轰击法等。对基因治疗的现状、存在的问题及未来发展前景作了简要探讨。  相似文献   

5.
6.
Major advances in the use of site-specific recombinases to facilitate sustained gene expression via chromosomal targeting have been made during the past year. New tools for genomic manipulations using this technology include the discovery of epitopes in recombinases that confer nuclear localization, crystal structures that show the precise topology of recombinase-DNA-substrate synaptic complexes, manipulations of the DNA recognition sequences that select for integration over excision of DNA, and manipulations that make changes in gene expression inducible by drug administration. In addition, endogenous eukaryotic and mammalian DNA sequences have been discovered that can support site-specific recombinase-mediated manipulations.  相似文献   

7.
8.
目的 了解温州地区临床分离的金黄色葡萄球菌(SA)的耐药特点,探讨SA中耐β-内酰胺类、氨基糖苷类、四环素类药物耐药基因及耐消毒剂基因(qacA)的存在情况.方法 采用聚合酶链式反应(PCR)法对SA进行β-内酰胺酶基因、氨基糖苷类修饰酶基因、四环素类基因和耐消毒剂基因检测.结果 PCR结果显示94株SA中耐药相关基因检出率mecA 53.2%、aac(6’)/aph(2")68.1%、aph(3’)-Ⅲ 37.2%、tetM 53.2%和qacA 7.4%,其中59株MRSA的耐药相关基因检出率分别为mecA 83.1%、aac(6’)/aph(2")86.4%、aph(3 ′)-Ⅲ 42.4%、tetM 76.4%和qacA 8.5%.结论 多数SA菌株存在耐β-内酰胺类、氨基糖苷类、四环素类等多种抗生素耐药基因,具有多重耐药特征,但尚未出现明显耐消毒剂状况.  相似文献   

9.
10.
The beta-glucuronidase (GUS) gene has been successfully used as a reporter gene in innumerable number of plant species. The functional GUS gene produces blue coloration in plants upon integration into the plant genome. Because of the ease it provides to analyze the gene expression (as no expensive equipment is needed), GUS gene is surely plant biotechnologist's first choice as a reporter gene. The turfgrass family contains the world's most economically important horticultural crops. There is a world-wide drive for genetic modification of grasses due to its huge economic importance. GUS gene can be transiently or stably expressed in grasses for the purpose of promoter analysis and to study tissue-specific and developmental gene expression. This paper summarizes the use of GUS gene for transient and stable expression studies in various turfgrass species.  相似文献   

11.
12.
sall4基因是sall基因家族的一个成员,在胚胎发育、器官形成和干细胞多能性的维持以及重建中都起到重要作用,有sall4a和sall4b两种剪切突变体类型。目前猪的sall4基因序列尚未获得。鉴于其在多能性细胞调控中的作用,对猪的sall4基因进行了克隆测序,并对其在各组织及胚胎中的表达进行了初步研究。通过5和3 RACE克隆得到猪sall4基因cDNA全长序列(2 372 bp),序列分析证明此基因编码的蛋白结构更接近于小鼠和人Sall4B亚型,同源性可达70%~80%,而与其他物种的Sall4A相比则缺少一段含锌指结构域的片段,同源性降至30%~55%。Real-time PCR证明猪sall4b基因广泛表达于猪的各种器官,其中除卵巢组织呈高量表达之外,脾、肺、心和睾丸表达量也相对较高;在早期胚胎发育过程中除4-细胞阶段相对表达量较低,其他阶段呈高量表达。免疫荧光跟踪Sall4在猪早期胚胎中的表达情况发现Sall4在着床前胚胎中全程表达并定位于细胞核中,在囊胚阶段基因表达趋向于定位在内细胞团中。表达分析证明sall4b基因与多能性紧密相关,预示着猪sall4b基因将可能作为新的重编程因子用于诱导猪多能干细胞的体系中。  相似文献   

13.
Stolovicki E  Dror T  Brenner N  Braun E 《Genetics》2006,173(1):75-85
The recruitment of a gene to a foreign regulatory system is a major evolutionary event that can lead to novel phenotypes. However, the evolvability potential of cells depends on their ability to cope with challenges presented by gene recruitment. To study this ability, we combined synthetic gene recruitment with continuous culture and online measurements of the metabolic and regulatory dynamics over long timescales. The gene HIS3 from the histidine synthesis pathway was recruited to the GAL system, responsible for galactose utilization in the yeast S. cerevisiae. Following a switch from galactose to glucose--from induced to repressed conditions of the GAL system--in histidine-lacking chemostats (where the recruited HIS3 is essential), the regulatory system reprogrammed to adaptively tune HIS3 expression, allowing the cells to grow competitively in pure glucose. The adapted state was maintained for hundreds of generations in various environments. The timescales involved and the reproducibility of separate experiments render spontaneous mutations an unlikely underlying mechanism. Essentially all cells could adapt, excluding selection over a genetically variable population. The results reveal heritable adaptation induced by the exposure to glucose. They demonstrate that genetic regulatory networks have the potential to support highly demanding events of gene recruitment.  相似文献   

14.
基因打靶定点突变秦川牛MSTN基因   总被引:4,自引:0,他引:4  
Myostatin(MSTN,肌肉生长抑制素)基因属于TGF-β超家族,对骨骼肌的生长发育具有负调控作用。该基因的功能缺失,能够引起肉用动物的"双肌"表型,从而提高产肉率。基因打靶技术是制作转基因动物的常用方法。构建了两个置换型打靶载体pA2T-Mstn4.0和pA2T-Mstn3.2,通过同源重组将G938A突变点引入秦川牛MSTN基因第三外显子。电穿孔方法转染秦川牛胎儿成纤维细胞,经过600μg/mL G418和50nmol/L GCV的药物正负筛选,共得到170个药物抗性细胞克隆。对细胞克隆进行PCR、测序及Southern blotting鉴定,结果显示,第58号细胞克隆为发生了正确同源重组的中靶细胞。牛胎儿成纤维细胞中的MSTN基因的一条等位基因被成功改造。  相似文献   

15.
Concerted gene duplications in the two keratin gene families   总被引:1,自引:0,他引:1  
Summary Evolutionary trees were derived from the keratin protein sequences using the Phylogeny Analysis Using Parsimony (PAUP) set of programs. Three major unexpected conclusions were derived from the analysis: The smallest keratin protein subunit, K#19 (Moll et al. 1982), is not the most primitive one, but has evolved to fulfill a highly specialized function, presumably to redress the unbalanced synthesis of keratin subunits. Second, the ancestors of keratins expressed in the early embryonic stages, K#8 and K#18, were the first to diverge from the ancestors of all the other keratins. The branches leading to these two keratins are relatively short, indicating a comparatively strong selection against changes in the sequences of these two proteins. Third, the two keratin families show extraodinary parallelism in their patterns of gene duplications. In both families the genes expressed in embryos diverged first, later bursts of gene duplications created the subfamilies expressed in various differentiated cells, and relatively recent gene duplications gave rise to the hair keratin genes and separated the basal cell-specific keratin from those expressed under hyperproliferative conditions. The parallelism of gene duplications in the two keratin gene families implies a mechanism in which duplications in one family influence duplication events in the other family.  相似文献   

16.
17.
18.
19.
Evolution of gene sequence and gene expression are not correlated in yeast   总被引:2,自引:0,他引:2  
We show that, in yeast, the divergence rate of gene expression is not correlated with that of its associated coding sequence. Gene essentiality influences both modes of evolution, but other properties related to protein structure or promoter composition are only correlated with coding-sequence divergence or gene expression divergence, respectively. Based on these findings, we discuss the possibilities of neutral evolution of gene expression and of different modes of evolution in unicellular versus multicellular organisms.  相似文献   

20.
Interaction of gene wellhaarig (we) with genes waved alopecia (wal) and hairless (hr) was studied in mice. The mutant gene we is responsible for the development of a specific waved coat in homozygotes. Homozygous mice carrying mutant gene wal also have a wavy coat, though a partial alopecia develops with time in these animals. In homozygotes for the hr gene, hair loss is observed beginning from the age of ten days. A series of crosses we/we and wal/wal yielded animals with we/+wal/wal and we/we wal/wal genotypes. In mice we/+wal/wal carrying gene we at a single dose, alopecia is accelerated significantly as compared to the single-dose homozygotes +/+wal/wal. In we/we wal/wal mice, alopecia starts earlier than in we/+wal/wal mice; by the age of one month, the double homozygotes are almost hairless except for small body areas covered with a sparse coat. In addition, curliness of the first-generation hair in mice we/we wal/wal is much more expressed than in +/+wal/wal and we/we+/+ mice. The obtained evidence suggests that the we gene is a modifier of the wal gene because the former enhances the effects of the wal gene, which is confirmed by the earlier onset of alopecia and progression of the latter in mice having the we/+wal/wal genotype and especially in we/we wal/wal animals. The we/we hr/+ mice do not differ in coat from we/we+/+ mice; in both cases, the coat is wavy. The coat of double homozygotes we/we hr/hr, is similar to that of we/we+/+ mice until ten days of age, when the signs of alopecia appear. By the age of 21 days, mice we/we hr/hr have lost their coat completely like mice +/+ hr/hr. Hence, the we gene is a modifier of the wal gene though it does not interact with hr gene during the coat formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号