首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The kinetic mechanisms by which the glucose, glucitol, N-acetylglucosamine, and mannitol enzymes II catalyze sugar phosphorylation have been investigated in vitro. Lineweaver-Burk analyses indicate that the glucose and glucitol enzymes II catalyze sugar phosphorylation by a sequential mechanism when the two substrates are phospho-enzyme III and sugar. The N-acetylglucosamine and mannitol enzymes II, which do not function with an enzyme III, catalyze sugar phosphorylation by a ping-pong mechanism when the two substrates are phospho-HPr and sugar. These results, as well as previously published kinetic characterizations, suggest a common kinetic mechanism for all enzymes II of the system. It is suggested that all enzymes II and enzyme II-III pairs arose from a single (fused) gene product containing two sites of phosphorylation and that phosphoryl transfer from the second phosphorylation site to sugar can only occur when the enzyme II-III pair is present in the associated state.  相似文献   

3.
The data obtained by foreign researchers on the transport of hexitols mannitol, galactitol and glucitol in enterobacteria are presented in the review. The genetical, biochemical and molecular biological aspects of functioning of the specific phosphoenolpyruvate-dependent phosphotransferase systems that transport the above mentioned polyols are discussed as well as the role of the components of glucitol transport system in gluconeogenesis regulation.  相似文献   

4.
The clostridia are a diverse group of obligately anaerobic bacteria with potential for the fermentative production of fuels, solvents and other chemicals. Several species exhibit a broad substrate range, but there have been few studies of the mechanisms involved in regulation of uptake and metabolism of fermentable carbohydrates.Clostridium beijerinckii(formerlyClostridium acetobutylicum) NCIMB 8052 exhibited transport activity for hexoses and hexitols. Glucose-grown cells transported glucose and fructose, but not galactose, glucitol (sorbitol) or mannitol, transport of which was induced by growth on the respective substrates. Phosphorylation of glucose, fructose, glucitol and mannitol by cell extracts was supported by phosphoenolpyruvate, indicating the involvement of a phosphotransferase system in uptake of these substrates. Fructose phosphorylation was also demonstrated by isolated membranes in the presence of fructose 1-phosphate, thus identifying this derivative as the product of the fructose phosphotransferase system. The presence of phosphotransferase activities in extracts prepared from cells grown on different carbon sources correlated with transport activities in whole cells, and the pattern of transport activities reflected the substrate preference of cells growing in the presence of glucose and another carbon source. Thus, glucose and fructose were co-metabolised, while utilization of glucitol was prevented by glucose, even in cells which were previously induced for glucitol metabolism. Of the substrates examined, only galactose appeared to be transported by a non-phosphotransferase mechanism, since a significant rate of phosphorylation of this sugar was supported by ATP rather than phosphoenolpyruvate.  相似文献   

5.
Mycelium of Puccinia graminis was grown for 4 d on 200 mM D-[U-14C]glucose followed by a cold chase for 30 h. Analysis of cellular metabolites during the chase indicated significant turnover only in carbohydrates soluble in 80% (w/v) ethanol. A kinetic analysis of the depletion of [14C] in pools of free sugars and sugar alcohols indicated that the trehalose pools and a small proportion (12–16%) of the mannitol and glucitol pools did not turn over, whilst pools of glucose, fructose, and the remainder of the hexitols became totally,depleted of label during the chase. Because the [14C] was totally lost from the pools of glucose and fructose prior to the hexitols, it was deduced that both of these hexoses were precursors of the hexitols. Estimation of the carbon fluxes through pools indicated that 52, 36 and 16% of the carbon from glucose was assimilated via glucitol, fructose and mannitol respectively, demonstrating that glucitol could not have originated from fructose as sole precursor. After offering D-[U-14C]glucitol, [14C] was assimilated into trehalose phosphate, glucans and amino acids, but not into free glucose or fructose. These data indicate that hexitols are quantitatively important intermediates during the assimilation of glucose by Puccinia graminis.  相似文献   

6.
The complete nucleotide sequence of the glucitol (gut) operon in Escherichia coli has been determined. The glucitol-specific Enzyme II and Enzyme III of the phosphoenolpyruvate:sugar phosphotransferase system as well as glucitol-6-phosphate dehydrogenase which are encoded by the gutA, gutB, and gutD genes of the gut operon, respectively, are predicted to consist of 506 (Mr = 54,018), 123 (Mr = 13,306), and 259 (Mr = 27,866) amino acyl residues, respectively. The hydropathic profile of the Enzyme IIgut revealed 7 or 8 long hydrophobic segments which may traverse the cell membrane as alpha-helices as well as 2 or 4 short strongly hydrophobic stretches which may traverse the membrane as beta-structure. The number of amino acyl residues in the sum of the molecular weights of the glucitol Enzyme II-III pair are nearly the same as those of the mannitol Enzyme II. The ratio of hydrophobic to hydrophilic amino acyl residues and the numbers of the hydrophobic segments are also nearly the same for both transport systems. However, no significant homology was found in the nucleotide or amino acyl sequences of the two systems. Glucitol-6-phosphate dehydrogenase was found to exhibit sequence homology with ribitol dehydrogenase. A repetitive extragenic palindromic sequence was found in the 3'-flanking region of the gutD gene, suggesting the presence of a gene downstream from the gutD gene.  相似文献   

7.
A reproducible approach to improve salt tolerance of conifers has been established by using the technology of plant genetic transformation and using loblolly pine (Pinus taeda L.) as a model plant. Mature zygotic embryos of three genotypes of loblolly pine were infected with Agrobacterium tumefaciens strain LBA 4404 harboring the plasmid pBIGM which carrying two bacterial genes encoding the mannitol-1-phosphate dehydrogenase (Mt1D, EC 1.1.1.17) and glucitol-6-phosphate dehydrogenase (GutD) (EC 1.1.1.140), respectively. Transgenic plantlets were produced on selection medium containing 15 mg l(-1) kanamycin and confirmed by polymerase chain reaction (PCR) and Southern blot analysis of genomic DNA. The Mt1D and GutD genes were expressed and translated into functional enzymes that resulted in the synthesis and accumulation of mannitol and glucitol in transgenic plants. Salt tolerance assays demonstrated that transgenic plantlets producing mannitol and glucitol had an increased ability to tolerate high salinity. These results suggested that an efficient A. tumefaciens-mediated transformation protocol for stable integration of bacterial Mt1D and GutD genes into loblolly pine has been developed and this could be useful for the future studies on engineering breeding of conifers.  相似文献   

8.
Peptides which correspond to the NH2-terminal 23 or 22 residues of the mannitol and glucitol permeases (enzymes IImtl and IIgut of the bacterial phosphotransferase system; mtl-23 and gut-22) and which are believed to function in envelope targeting were synthesized chemically, and their interactions with lipid model membranes were studied. Both wild-type peptides penetrated phospholipid monolayers up to high surface pressures, and partition constants of 8.0 x 10(4) M-1 and 4.2 x 10(4) M-1, respectively, were derived from the incorporation isotherms of mtl-23 and gut-22 with monolayers of 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine at 32 mN/m or bilayers of the same lipid. The mtl-23 peptide was highly alpha-helical in trifluoroethanol, sodium dodecyl sulfate, lysolecithin, or vesicles of 1-palmitoyl-2-oleoyl-3-sn-phosphatidylglycerol, with estimated percentages of alpha-helix ranging between 60 and 85%. The interactions with model membranes of several single site mutants (S3P, D4P, and D4K) of mtl-23 which were defective in properly assembling the mannitol permease in the cytoplasmic membrane of Escherichia coli were also studied. The contents of alpha-helix of these peptides in detergent micelles or phospholipid bilayers were not significantly changed compared with those of the wild type, suggesting that the amphiphilic NH2-terminal membrane-targeting domain could still be formed in these mutants. However, the mutants which contained a proline in positions 3 or 4, i.e. NH2-terminal to the proposed amphiphilic alpha-helix, partitioned into phospholipid monolayers with partition constants that were 2 or 4 times smaller than those of the wild type. Based on these data, a model of the amphiphilic structure of the NH2-terminal domain of the mannitol permease is discussed. This domain may interact physiologically with amphiphilic interfaces of lipids and/or proteins during membrane insertion.  相似文献   

9.
The existence of antibodies to nonenzymatically glucosylated albumin was investigated in nondiabetic and diabetic subjects. The sera from both the nondiabetic and the diabetic subjects were shown to contain the proteins which bound to reductively glucosylated albumin. An enzyme-linked immunosorbent assay demonstrated that the antibodies specific for reductively glucosylated albumin existed in the sera containing the binding proteins. For binding the antibodies glucitollysine as the glucose adduct in reductively glucosylated albumin was an effective competitor. The hexose alcohol epimers glucitol and mannitol were also effective competitors compatible with glucitollysine. Our results suggest that the antibodies to reductively glucosylated albumin are widely present not only in the diabetic subjects but also in the nondiabetic subjects and cross-react with the hexose alcohol.  相似文献   

10.
Nucleotide sequence of the mannitol (mtl) operon in Escherichia coli   总被引:10,自引:0,他引:10  
The nucleotide sequence of the known portions of the mannitol operon in Escherichia coli (mtlOPAD) has been determined. Both the operator-promoter region and the intercistronic region between the mtlA and mtlD genes (encoding the mannitol-specific Enzyme II of the phosphotransferase system and mannitol-1-phosphate dehydrogenase, respectively) show parallels with corresponding regions of the glucitol (gut) operon, but neither the mtlA nor the mtlD gene products show obvious homology with the corresponding gene products of the glucitol operon. Five potential cyclic AMP receptor protein binding sites were identified in the mtlOP region, all showing near identity with the consensus sequence. Four regions of dyad symmetry (four to seven bases in length), serving as potential repressor binding sites, overlap with the potential cyclic AMP receptor protein binding sites. Repetitive extragenic palindromic (REP) sequences, forming stem-loop structures in the intercistronic region between mtlA and mtlD and following the mtlD gene were identified. Probable terminator sequences were not found in any of these three regulatory regions. Mannitol-1-phosphate dehydrogenase exhibits two overlapping, potential NAD+ binding sites near the N-terminus of the protein. Computer techniques were used to analyse the mtlD gene and its product.  相似文献   

11.
In gram-positive bacteria, HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), is phosphorylated by an ATP-dependent, metabolite-activated protein kinase on seryl residue 46. In a Bacillus subtilis mutant strain in which Ser-46 of HPr was replaced with a nonphosphorylatable alanyl residue (ptsH1 mutation), synthesis of gluconate kinase, glucitol dehydrogenase, mannitol-1-P dehydrogenase and the mannitol-specific PTS permease was completely relieved from repression by glucose, fructose, or mannitol, whereas synthesis of inositol dehydrogenase was partially relieved from catabolite repression and synthesis of alpha-glucosidase and glycerol kinase was still subject to catabolite repression. When the S46A mutation in HPr was reverted to give S46 wild-type HPr, expression of gluconate kinase and glucitol dehydrogenase regained full sensitivity to repression by PTS sugars. These results suggest that phosphorylation of HPr at Ser-46 is directly or indirectly involved in catabolite repression. A strain deleted for the ptsGHI genes was transformed with plasmids expressing either the wild-type ptsH gene or various S46 mutant ptsH genes (S46A or S46D). Expression of the gene encoding S46D HPr, having a structure similar to that of P-ser-HPr according to nuclear magnetic resonance data, caused significant reduction of gluconate kinase activity, whereas expression of the genes encoding wild-type or S46A HPr had no effect on this enzyme activity. When the promoterless lacZ gene was put under the control of the gnt promoter and was subsequently incorporated into the amyE gene on the B. subtilis chromosome, expression of beta-galactosidase was inducible by gluconate and repressed by glucose. However, we observed no repression of beta-galactosidase activity in a strain carrying the ptsH1 mutation. Additionally, we investigated a ccpA mutant strain and observed that all of the enzymes which we found to be relieved from carbon catabolite repression in the ptsH1 mutant strain were also insensitive to catabolite repression in the ccpA mutant. Enzymes that were repressed in the ptsH1 mutant were also repressed in the ccpA mutant.  相似文献   

12.
The group-specific polysaccharide of the group B Streptococcus was isolated by nitrous acid extraction followed by gel filtration on Sepharose 6B and chromatography on DEAE-Bio-Gel A. It was composed of rhamnose, galactose, N-acetylglucosamine, and glucitol phosphate. Mild periodate oxidation of the polysaccharide resulted in a rapid reduction in molecular weight, indicating that the glucitol was located in the backbone of the polymer. High-resolution 31P NMR showed the presence of a single type of phosphodiester bond in the molecule. Methylation analysis and several specific chemical degradations were done to determine sugar linkages. The basic structure of the group B polysaccharide consists of a backbone of 2-linked rhamnose, 2,4-linked rhamnose, and glucitol phosphate, and side chains of rhamnose(1----3)galactose(1----3)N-acetylglucosamine linked to the 4-position of a rhamnose in the backbone.  相似文献   

13.
The phosphoenolpyruvate-dependent phosphorylation of glucitol has been shown to require four distinct proteins in Salmonella typhimurium: two general energy-coupling proteins, enzyme I and HPr, and two glucitol-specific proteins, enzyme IIgut and enzyme IIIgut. The enzyme IIgut was solubilized from the membrane and purified about 100-fold, free of the other protein constituents of the phosphotransferase system. Enzyme IIIgut was found in both the soluble and the membrane fractions. The soluble enzyme IIIgut was purified to near homogeneity by gel filtration, hydroxylapatite chromatography, and hydrophobic chromatography on butylagarose. It was sensitive to parital inactivation by trypsin and N-ethylmaleimide, but was stable at 80 degrees C. The protein had an approximate molecular weight of 15,000. It was phosphorylated in the presence of phosphoenolpyruvate, enzyme I, and HPr, and this phosphoprotein was dephosphorylated in the presence of enzyme IIgut and glucitol. Antibodies were raised against enzyme IIIgut. Enzyme IIIglc and enzyme IIIgut exhibited no enzymatic or immunological cross-reactivity. Enzyme IIgut, enzyme IIIgut, and glucitol phosphate dehydrogenase activities were specifically induced by growth in the presence of glucitol. These results serve to characterize the glucitol-specific proteins of the phosphotransferase system in S. typhimurium.  相似文献   

14.
15.
A particulate enzyme preparation prepared from the intimal layer of pig aorta catalyzed the transfer of mannose from mannosyl-phosphoryl-polyprenol (MPP) into a series of oligosaccharides that were linked to lipid. The reaction required detergent with Triton X-100 and NP-40 being best at a concentration of 0.5%. Several other detergents were inactive or only slightly active. The pH optima for this activity was about 7 to 7.5 in Tris buffer and the apparent Km for MPP was about 2 x 10(-7) M. The reaction was not stimulated by the addition of divalent cation and, in fact, was inhibited by the high concentrations of cation. The addition of EDTA did not inhibit the transfer of mannose from MPP and was somewhat stimulatory. The transferase(s) activity was "solubilized" from the particles by treatment with Triton X-100. This solubilized enzyme still formed a series of lipid-linked oligosaccharides from either MPP or GDP-mannose. The oligosaccharides were released from the lipid by mild acid hydrolysis and were separated by paper chromatography. Some five or six radioactive oligosaccharides were formed from either MPP or from GDP-mannose and these oligosaccharides had similar mobilities upon paper chromatography. However, MPP was a better donor for the larger oligosaccharides (i.e. those containing 8, 9, or 10 sugar residues), whereas GDP-mannose was better for formation of the oligosaccharide containing 7 sugar residues. In the presence of EDTA and detergent no MPP was formed from GDP-mannose, but radioactivity was still incorporated into the lipid-linked oligosaccharides. Under these conditions essentially all of the radioactivity was in the oligosaccharide containing 7 sugar residues. Since much of this activity could be released as mannose by acetolysis, GDP-mannose may be the direct mannosyl donor for formation of 1 leads to 6 branches. Oligosaccharides 7, 8, 9, and 10 were isolated and partially characterized in terms of their molecular weights, sugar composition, susceptibility to alpha-mannosidase, and 14C products formed by acetolysis and periodate oxidation. The molecular weights ranged from 1310 for oligosaccharide 7 to 1750 for oligosaccharide 10. Hydrolysis of each oligosaccharide and reduction with NaB3H4 gave the expected ratio of [3H]hexitol to [3H]hexosaminitol based on the molecular weight of the oligosaccharide. However, the hexitol fraction contained [3H]mannitol and [3H]glucitol. Since the amount of radioactivity in glucitol was 2 to 4 times that in mannitol and since only glucosaminitol was found in the amino sugar peak, it seems likely that each 14C-oligosaccharide was contaminated with an unlabeled oligosaccharide of equal molecular weight containing glucose and GlcNAc. Acetolysis of the 14C-oligosaccharides gave rise to 14C peaks of mannose, mannobiose, and mannotriose. In the larger oligosaccharides, most of the radioactivity was in mannobiose whereas in oligosaccharide 7 most of the radioactivity was in mannose...  相似文献   

16.
Galactose metabolism in Lactobacillus casei 64H was analyzed by genetic and biochemical methods. Mutants with defects in ptsH, galK, or the tagatose 6-phosphate pathway were isolated either by positive selection using 2-deoxyglucose or 2-deoxygalactose or by an enrichment procedure with streptozotocin. ptsH mutations abolish growth on lactose, cellobiose, N-acetylglucosamine, mannose, fructose, mannitol, glucitol, and ribitol, while growth on galactose continues at a reduced rate. Growth on galactose is also reduced, but not abolished, in galK mutants. A mutation in galK in combination with a mutation in the tagatose 6-phosphate pathway results in sensitivity to galactose and lactose, while a galK mutation in combination with a mutation in ptsH completely abolishes galactose metabolism. Transport assays, in vitro phosphorylation assays, and thin-layer chromatography of intermediates of galactose metabolism also indicate the functioning of a permease/Leloir pathway and a phosphoenolpyruvate-dependent phosphotransferase system (PTS)/tagatose 6-phosphate pathway. The galactose-PTS is induced by growth on either galactose or lactose, but the induction kinetics for the two substrates are different.  相似文献   

17.
When studying the biosynthesis of mucidin under production (glucose as the main carbon source) and non-production (glucitol as the main carbon source) conditions it could be shown that the producer,Oudemansiella mucida, utilizes glucitol both for growth and for mucidin biosynthesis. However, the production of mucidin is 10 times ower than on glucose. When the culture was preincubated on glucose and transferred to non-production conditions the negative effect of glucitol could not be demonstrated. Biosynthesis of mucidin is influenced by the used carbon source already at an early stage of the cultivation  相似文献   

18.
19.
The amino acyl sequences of eight permeases (enzymes II and enzyme II-III pairs) of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) have been analyzed. All systems show similar sizes, and six of these systems exhibit the same molecular weight +/- 2%. Several exhibit sequence homology. Characteristic NH2-terminal and COOH-terminal sequences were found. The NH2-terminal leader sequences are believed to function in targeting of the permeases to the membrane, whereas the characteristic COOH-terminal sequences are postulated to mediate interaction with the energy-coupling protein phospho HPr. One of the systems, the one specific for mannose, exhibits distinctive characteristics. A pair of probable phosphorylation sites was detected in each of the five most similar systems, those specific for beta-glucosides, sucrose, glucose, N-acetylglucosamine, and mannitol. One of the two equivalent phosphorylation sites (proposed phosphorylation site 1) was located approximately 80 residues from the COOH terminus of each system. The other site (proposed phosphorylation site 2) was located approximately 440 residues from the COOH termini of the glucose and N-acetylglucosamine systems, approximately 320 residues from the COOH termini of the beta-glucoside and sucrose systems, and 381 residues from the COOH terminus of the mannitol system. Intragenic rearrangement during evolutionary history may account for the different positions of phosphorylation sites 2 in the different PTS permeases. More extensive intragenic rearrangements may have given rise to entirely different positions of phosphorylation in the glucitol, mannose, and lactose systems. A single, internal amphipathic alpha-helix with characteristic features was found in each of seven of the eight enzymes II. The lactose-specific enzyme III of Staphylococcus aureus was unique in possessing a COOH-terminal amphipathic alpha-helix rich in basic amino acyl residues. Possible functions for these amphipathic segments are discussed.  相似文献   

20.
The metabolism of glucose by subcellular preparations of human full term placentae has been investigated. It has been shown that in the presence of NADPH two transformation products can be detected of which one has been identified as glucitol. The effects of dehydroepiandrosterone and 16alpha-hydroxydehydroepiandrosterone on the reduction of glucose to glucitol have also been studied. It has been found that at a concentration of DHA 1.2 X 10(-4)M, the reduction of glucose is strongly inhibited (35-51%), while at a concentration of DHA 5.8 X 10(-6)M this reaction is stimulated by 13 +/- 2.3%. 16alpha-hydroxyepiandrosterone at concentrations ranging from 1.2 X 10(-4)M to 3 X 10(-6)M inhibits the formation of glucitol from 63% to 9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号