首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Much of our current understanding of the impact of invasive species on plant communities is based on patterns occurring in the above-ground vegetation, while only few studies have examined changes in soil seed banks associated with plant invasions, despite their important role as determinants of vegetation dynamics. Here, we reviewed the literature on the impact of plant invasions on the seed bank and we provide a quantitative synthesis using a meta-analysis approach. Specifically, (1) we quantified the impact of 18 invasive alien plants on (i) species richness and (ii) density of the seed banks of invaded communities, based on 58 pair-wise invaded-uninvaded comparisons (cases); we identified (2) the invasive taxa that are responsible for the largest changes in the seed bank; and (3) the habitats where substantial changes occur. Our study showed three major findings: (1) species richness (68% of cases) and density (58% of cases) were significantly lower in native seed banks invaded by alien plants; (2) species richness and density of native and alien species were remarkably lower in seed banks invaded by large, perennial herbs compared to uninvaded sites; and (3) invaded seed banks were often associated with a larger richness and/or abundance of alien species. This study indicates a need for additional seed bank data in invasion ecology to characterize species-specific and habitat-specific impacts of plant invasions, and to determine whether changes in the seed banks of native and alien species are a symptom of environmental degradation prior to a plant invasion or whether they are its direct result. The findings of this study help improve our capacity to predict the long-term implications of plant invasions, including limitations in the recruitment of native species from the seed bank and the potential for secondary invasions by seeds of other alien species.  相似文献   

2.
South African fynbos vegetation is threatened on a large scale by invasive woody plants. A major task facing nature conservation managers is to restore invaded areas. The aim of this study was to determine the restoration potential of fynbos following dense invasion by the Australian tree Acacia saligna. The impacts of dense invasion on seed‐bank composition and depth distribution were investigated to determine which fynbos guilds and species have the most persistent seed‐banks. Soil samples were excavated at three different depths for invaded and uninvaded vegetation at two sand plain and mountain fynbos sites. Seed‐banks were determined using the seedling emergence approach. Invasion caused a significant reduction in seed‐bank density and richness at all sites. There was a significant, but smaller, reduction in seed‐bank density and richness with soil depth at three sites. Seed‐bank composition and guild structure changed following invasion. Low persistence of long‐lived obligate seeders in sand plain fynbos seed‐banks indicates that this vegetation type will be difficult to restore from the seed‐bank alone following alien clearance. The dominance of short‐lived species, especially graminoids, forbs and ephemeral geophytes, suggests that regenerating vegetation will develop into a herbland rather than a shrubland. It is recommended that seed collecting and sowing form part of the restoration plan for densely invaded sand plain sites. As seed density remained higher towards the soil surface following invasion, there is no general advantage in applying a mechanical soil disturbance treatment. However, if the shallow soil seed‐bank becomes depleted, for example following a hot fire through dense alien slash, a soil disturbance treatment should be given to exhume the deeper viable seed‐bank and promote recruitment.  相似文献   

3.
杂草种子传播研究进展   总被引:5,自引:1,他引:4  
李儒海  强胜 《生态学报》2007,27(12):5361-5370
种子传播将母株生殖周期的末端与它们后代种群的建立连结了起来,广泛认为,其对植被结构具有深刻的影响。种子传播的整个过程称为种子传播循环。研究表明,杂草种子传播的因子多种多样,包括仅依赖自身来完成的主动传播,以及依赖风、水、动物、人类等外界媒介的被动传播。其中,人类传播杂草种子是影响最广泛的一种,对现代植物的分布格局产生了深刻的影响。杂草种子的传播,对杂草种子库的数量和空间动态影响很大。研究种子传播的主要方法有荧光染料标记法、放射性同位素标记法、稳定同位素分析、分子遗传标记等。结合近几年国内外的研究进展,作者就杂草种子传播对种子库数量和空间动态影响的精确直接研究、杂草种子传播的过程及传播后的命运、杂草种子适应传播的机理、生态控草措施研究、外来杂草入侵蔓延与其种子传播的关系等方面提出了展望。  相似文献   

4.
Holmes  Patricia M.  Cowling  R. M. 《Plant Ecology》1997,133(1):107-122
We investigated vegetation-seed bank relationships at three fynbos sites on the Cape Peninsula, South Africa, and the impacts to these sites of invasion by the alien tree Acacia saligna. Soil-stored seed banks in uninvaded fynbos were of a similar density to those previously measured in fynbos (ca. 1100–1500 seeds m-2) and were dominated by mostly short-lived species. Lack of similarity between mature vegetation and seed banks, suggests that seed banks are poor predictors of mature vegetation composition and structure in fynbos. This lack of correspondence was attributed to the ephemerals (present only in the soil seed bank) and the dominance of serotinous (aerial seed bank) and sprouting (soil seed bank low to absent) species, in mature vegetation. Long-lived seeders were among the 10 most abundant species in the seed banks at all sites and at two sites shrub species contributed more to seed bank richness than any other growth form. Soil-stored seed banks, therefore, boost species richness and diversity both in early post-fire and later seral stages.There was a decline in fynbos species richness, diversity and abundance both in the standing vegetation and seed banks with increasing duration of invasion by the alien tree, Acacia saligna. However, the rate of decline was higher for the vegetation than the seed banks, suggesting that many fynbos species have long-term persistent seed banks. At two sites, there was no obvious shift in community composition associated with Acacia invasion: invaded sites were depauperate versions of the uninvaded site. However, at a third site, the vegetation composition shifted towards a community dominated by bird-dispersed thicket species and its seed bank shifted towards a community dominated by wind-dispersed perennials. Community composition of the soil seed banks under dense, recent Acacia was very similar to that of the corresponding uninvaded fynbos at all sites, indicating that there is good potential to return to species-rich fynbos vegetation after removal of the alien Acacia. Most seed bank species persisted in the soil seed bank of the long-invaded fynbos at low frequency and density, indicating high seed longevity in many species. We suggest that either a thick Acacia litter layer or a deep (>5 cm) burial moderated the fire and ambient temperature effects, preventing these seeds from germinating after fire and thus preventing loss from the seed bank.  相似文献   

5.
Abstract. Hawaiian ecosystems are prone to invasion by alien plant species. I compared the seed rain, seed bank, and vegetation of a native Hawaiian forest to examine the potential role that seed ecology plays in allowing alien species to invade native forest. Absolute cover of seed plants in the forest was 126 %, annual seed rain was 5 713 seeds m-2 yr-1, and the mean density of seedlings emerging from the seed bank averaged across four seasons was 1 020/m2. The endemic tree Metrosideros polymorpha was the most abundant species in the vegetation, seed rain and winter seed bank. Overall, native seed plants comprised 95 % of the relative cover in the vegetation and 99 % of the seeds in the seed rain, but alien species comprised 67 % of the seeds in the seed bank. Alien species tended to form persistent seed banks while native species formed transient or pseudo-persistent seed banks. Dominance of the seed bank by alien species with persistent seed banks suggests that aliens are favorably placed to increase in abundance in the vegetation if the forest is disturbed.  相似文献   

6.
Question: How resilient is the seed bank of an invaded dune system? Is that resilience dependent on duration of invasion? How does the accumulated litter layer contribute to the soil seed bank? Location: Coastal sand dunes invaded by Acacia longifolia, Portugal. Methods: Seedling emergence was used to quantify and compare soil seed banks in long‐invaded, recently invaded and non‐invaded areas. Changes in seed banks were also compared with areas where A. longifolia and the litter layer were removed. Results: Species richness, seedling density and diversity were higher in non‐invaded and recently‐invaded areas than in long‐invaded areas. Although there was an apparent similarity between non‐invaded and recently‐invaded areas, analyses of species traits revealed differences. Non‐invaded areas had a wider array of traits. Exotic/invasive species dominated invaded seed banks while native species dominated non‐invaded seed banks. Life forms, growth forms, longevity and dispersal mode showed differences between areas, with cleared plots of long‐invaded areas being apparently the most similar to non‐invaded plots. Acacia longifolia seeds were most abundant in long‐invaded areas, particularly where the litter layer remained. Removal of A. longifolia plus the litter had little effect on the seed bank composition of recently‐invaded areas but resulted in noticeable changes in seed banks of long‐invaded areas. Conclusions: Long‐invaded areas are less resilient and show a higher reinvasion potential, despite severe alteration of the seed banks of both areas. Seed bank studies can be a useful tool to guide management, but can give misleading results when invasion periods are protracted.  相似文献   

7.
Invasive plants significantly threaten native plant biodiversity, yet the mechanisms by which they drive species losses and maintain their own dominance are poorly known. We examined the effects of alien grass invasion (Stenotaphrum secundatum) on (1) abundance and frequency of occurrence, (2) reproductive effort (flowering) and output (fruit production) and (3) soil seed banks for three focal native plants that are characteristic of endangered coastal forest of south-eastern Australia. First, we sampled and compared the foliage cover abundance and frequency (proportion of sites occupied) of the focal natives across invaded and non-invaded (reference) sites (n = 20). We then intensively sampled reproductive effort and output (range of 5–9 sites per species), and density of propagules within the soil (using a standard glasshouse ‘emergence’ method; n = 26) for each species. Invasion was associated with reduced population sizes of all species within the standing vegetation but did not affect population frequency (i.e. proportion of sites where each species was present). Reproductive effort and output were about 75 % lower at invaded than native sites for all species. However, invasion had no effect on propagule densities of the focal natives within the seed bank, despite the substantial reduction in their reproduction. This indicates that the ultimate driver of population declines across invaded landscapes is post-settlement recruitment limitation from the seed bank (e.g. low rates of germination and seedling survival) rather than a reduction in the arrival and storage of propagules at invaded sites. Removal of Stenotaphrum alone might thus be sufficient to stimulate the recovery of native populations from the seed bank.  相似文献   

8.
Abstract. Secondary succession and seed bank formation was studied in a formerly grazed, abandoned, eastern Hungarian sandy steppe‐meadow (Pulsatillo‐Festucetum). The vegetation was sampled at different elevations of a sand dune which became partly invaded by the tree Robinia pseudo‐acacia ca. 10 yr ago. Pre‐abandonment vegetation records were used as historic references. Though composition of the non‐invaded grassland only changed moderately, dominance of tall grasses (Elymus hispidus, Poa angustifolia) increased significantly at the cost of annuals and low stature perennials. In the stand invaded by Robinia most grassland species were lost and replaced by nitrophytes. Vertical position influenced species abundance, but affected the composition only moderately. Fine‐scale zonation of the vegetation also changed with time. Species richness of the above‐ground vegetation and the seed density of soil samples at the lower elevation were slightly greater than at the higher sites. Seed banks of sensitive grassland specialists (e.g. Pulsatilla pratensis subsp. hungarica) disappeared during grass encroachment. Following extinction from above‐ground vegetation, restoration must rely on dispersal from adjacent areas. In contrast, several annuals and perennials, which survived this degradation stage in the above‐ground vegetation, possessed seed banks. Many of these species became extinct from the vegetation during the Robinia invasion but left viable persistent seeds. This fact is promising for restoration of the Potentillo‐Festucetum sandy pasture. Competitive weedy species and sprouting Robinia can, however, limit seedling establishment.  相似文献   

9.
Questions: Are soil seed banks affected by invasions of alien plants? How can we rigorously assess alterations in seed bank communities associated with invasive species and account for the high spatial variability of seed bank data? How do multivariate approaches compare with more traditional approaches based on analysis of variance? Location: Three riparian sites, Ireland. Methods: A protocol based on a combination of multivariate techniques was used to characterize soil seed bank communities associated with the herbaceous invasive species Heracleum mantegazzianum in May and October. Permutational multivariate analysis of variance (PERMANOVA) was used to test the effects of the factors “invasion”, “site”, “plot” and “depth” on the soil seed bank, while multivariate analysis of dispersion (PERMDISP) provided a measure of the variability of seed bank data at different spatial scales. Similarity percentages analysis (SIMPER) was used to identify the species that contributed most to the differences between invaded and uninvaded communities. A comparison between the results of PERMANOVA and ANOVA analyses was also made. Results: The composition of seed bank communities invaded by H. mantegazzianum differed significantly from that of uninvaded seed banks. Invaded seed banks were less diverse and had reduced abundance, and were dominated by only a few species, such as Urtica dioica and Juncus effusus. Such patterns were recorded at each of three depth categories, indicating that invasive plants can affect both the transient and the more persistent component of the soil seed bank. Seed bank variability was significantly higher within uninvaded areas, supporting the notion that invasions tend to lead to more homogeneous communities. Conclusion: The analytical protocol used in this study was effective in quantifying the effect of plant invasions, at different spatial scales, providing a statistically robust analysis of alterations in soil seed bank communities. Compared to ANOVA, this protocol provided more biological information and was more appropriate for analysis of the data. This approach is therefore recommended in soil seed bank and invasion ecological studies.  相似文献   

10.
Invasions by alien plant species may substantially alter soil seed bank communities. While decreases in seed bank species richness, diversity, and composition as a consequence of plant invasions have been reported, the characteristics of seed banks associated with different invasive species have not been compared in any detail. Here, we describe changes in the characteristics of soil seed banks invaded by three large herbaceous invasive plants, Fallopia japonica, Gunnera tinctoria, and Heracleum mantegazzianum. The study was carried out at the spatial scales of site and plot, to reduce variability in seed bank data. Information on seed bank persistence was inferred from seed depth (0–5, 5–10, and 10–15 cm) and from time of sampling (May and October). Despite differences in the reproductive strategy and geographic distribution of these invaders, as well as in the standing vegetation and habitat types examined, the seed banks of invaded areas were similar in composition and in the relative abundance of different species. Invaded seed banks were dominated by seeds of a few agricultural weed species and/or rushes, suggesting that common features of the invaders, including a large standing biomass, extensive litter production, and the formation of mono-species stands may result in comparable selection pressures that favors traits that are largely genera or species-specific. These findings have a direct relevance for the development of strategies aimed at restoring previously-invaded sites while also improving our understanding of the long-term implications of plant invasions.  相似文献   

11.
Soil seed banks are important to many plant communities and are recognized as an important component of management plans. Understanding seed bank composition and density is especially important when communities have been invaded by exotic species and must be managed to promote desirable species. We examined germinable soil seed banks in southern California coastal sage scrub (CSS) that is heavily invaded by exotic grasses and in adjacent exotic grassland. Soils from both communities had similar seed banks, dominated by high densities of exotic grass and forb species. Up to 4,000 exotic grass seeds and at least 400 exotic forb seeds/m2 were found in most soils, regardless of aboveground vegetation type. Native forbs averaged 400 seeds/m2 in grass-dominated areas and about 800 in shrub-dominated soils. Shrub seed density was <1 and <10 seeds/m2 in grass- and shrub-dominated areas, respectively, indicating that the shrub seed bank is not persistent compared to annuals. We also compared pre- and post-burn soil seed banks from one location that burned in October 2003. Late-season burning in both grass- and CSS-dominated areas disproportionately reduced exotic grass seed densities relative to native seed densities. The similarity of the seed banks in adjacent grass and shrub communities suggests that without intervention, areas currently dominated by CSS may become more similar to grass-dominated areas in terms of aboveground vegetation. In such areas, the first growing season following a wildfire is a window of opportunity for increasing native diversity at a time when density of exotic grass seeds is low. At time of research, Robert D. Cox was graduate student.  相似文献   

12.
Questions: How does invasion affect old‐field seed bank species richness, composition and density? How consistent are these effects across sites? Does the soil seed bank match vegetation structure in old‐fields? Location: Menorca, Balearic Islands, Spain, western Mediterranean basin. Methods: We monitored seed germination in soils from old‐fields that were both uninvaded and invaded (legacy effect) by the annual geophyte Oxalis pes‐caprae. We also added O. pes‐caprae bulbs to uninvaded soils to test O. pes‐caprae interference with seedling emergence (competitive effect). We compared species composition in the seed bank with that of the vegetation. Results: Species richness in the seed bank and in the vegetation was not significantly different between invaded and uninvaded areas. Uninvaded areas did not have larger seed banks than invaded areas. More seedlings, especially of geophytes, emerged when O. pes‐caprae bulbs were added to the soil. Species similarity between invaded and uninvaded areas was higher in the seed bank (74%) than in the vegetation (49%). Differences in species composition were as important as differences among sites. The degree of species similarity between the seed bank and the vegetation was very low (17%). Conclusions: Despite invasion by O. pes‐caprae not affecting species richness, the variation in the seed bank species composition in invaded and uninvaded areas, and the differences between the seed bank and the mature vegetation, highlights that even if the invader could be eradicated the vegetation could not be restored back to the exact composition as found in uninvaded areas.  相似文献   

13.
Sea level rise may alter salinity and inundation regimes and create patches of open water in oligohaline coastal marshes, potentially affecting the composition and germination of seed bank species. We conducted seedling emergence experiments to: (1) examine the effects of standing vegetation on the seed banks of three oligohaline marsh communities in coastal Louisiana (dominated by Paspalum vaginatum Sw., Sagittaria lancifolia L., or Spartina patens (Ait.) Muhl., respectively); and (2) investigate the effects of salinity and inundation regime on germination of seed bank species. We also studied the effect of a temporary increase in salinity (to simulate a salt water intrusion event) on the viability of buried seeds. We found that the presence or absence of vegetation within a community affected the abundance of some species in the seed bank but had little effect on species composition. Also, the seed banks of the three communities exhibited considerable overlap in species composition and had similar species richness (10–11) and diversity (antilog Shannon-Weaver diversity index = 6.5–7.1), despite differences in vegetation type. Higher salinities and flooding reduced seedling emergence for most species; few species emerged at salinities above four parts per thousand (ppt), and only Sagittaria lancifolia and Eleocharis parvula germinated well under flooded conditions. A temporary increase in salinity did not affect species richness or seedling emergence of most species. Our results suggest that differences in vegetation may have little effect on the composition of seed banks of oligohaline marshes. However, higher salinities and greater depth and duration of inundation (anticipated as global sea level continues to rise) may decrease recruitment of seed bank species, reducing their abundance in oligohaline marsh communities.  相似文献   

14.
The ability of plant communities to recover after non-native species invasion will depend upon the nature of their soil seed bank and seed rain characteristics. This study assessed changes in the soil seed bank and seed rain associated with the invasion of the non-native shrub Cytisus scoparius in subalpine vegetation. Soil seed bank and seed rain composition, density and richness were investigated at three areas of different stages of invasion: (i) recent (8–10 years), (ii) mature (15–16 years) and (iii) long-term (25 years). There were few changes in seed bank composition or richness regardless of invasion stage. By contrast, the seed rain composition, richness and density was substantially different within long-invaded areas. Very few seeds were able to colonise the dense barrier characteristic of larger, more mature C. scoparius stands. Some prominent herbs from the native vegetation were under-represented or absent from the seed bank, both in invaded and uninvaded areas. Laboratory germination experiments demonstrated that most native species germinate easily, which may imply a transient seed bank, rather than a persistent one. The majority of herbaceous and shrub species were capable of resprouting vegetatively. Therefore, regeneration appeared more reliant on the bud and tuber bank than a persistent soil seed bank. The dominance of graminoid species and C. scoparius rather than other herbaceous, shrub or tree species suggests that the regenerating vegetation will be dominated by grass species and/or C. scoparius. Hence, in areas where long-invaded C.␣scoparius stands are present the recovery of native subalpine vegetation maybe difficult. Recovery may only be possible through wind dispersal from the surrounding intact vegetation or through actively reseeding the area. This study highlights the importance of early intervention in invasive species management.  相似文献   

15.
Weed seed banks in arable fields under contrasting pesticide regimes   总被引:1,自引:0,他引:1  
Viable weed seed banks on a clay soil were estimated for five years from 11 arable fields receiving one of three levels of pesticide application. Low seed densities, averaging 2000 m-2, were recorded, but dicotyledonous weed seed numbers usually increased following oilseed rape crops, reaching 26 000 m-2 in one field. Field-to-field variability was large. Samples could be grouped using multivariate techniques into those dominated by grass weed seeds and those containing mainly dicotyledonous weed seeds. Within TWINSPAN classifications, most fields maintained similar seed banks during the study period, indicating relative stability of communities. Differences present at the outset of the experiment, including variation between fields in the same treatment area, were maintained for the five years. Patterns were not associated with straw disposal or spring herbicide application. Oilseed rape crops did not cause qualitative change in seed bank communities, but allowed certain species, notably Stellaria media and Sonchus asper, to increase seed numbers. Smaller and less diverse seed banks in the area receiving most herbicide were not statistically significant. Seed banks gave poor predictions of following weed populations.  相似文献   

16.
The impact of an exotic species in natural systems may be dependent not only on invader attributes but also on characteristics of the invaded community. We examined impacts of the invader bitou bush, Chrysanthemoides monilifera ssp. rotundata , in fore and hind dune communities of coastal New South Wales, Australia. We compared invader impacts on vegetation structure, richness of both native and exotic growth forms and community variability in fore and hind dunes. We found that impacts of bitou invasion were context specific: in fore dune shrublands, functionally distinct graminoid, herb and climber rather than shrub growth forms had significantly reduced species richness following bitou invasion. However, in forested hind dunes, the functionally similar native shrub growth form had significantly reduced species richness following bitou invasion. Density of vegetation structure increased at the shrub level in both fore and hind dune invaded communities compared with non-invaded communities. Fore dune ground-level vegetation density declined at invaded sites compared with non-invaded sites, reflecting significant reductions in herb and graminoid species richness. Hind dune canopy-level vegetation density was reduced at invaded compared with non-invaded sites. Bitou bush invasion also affected fore dune community variability with significant increases in variability of species abundances observed in invaded compared with non-invaded sites. In contrast, variability among all hind dune sites was similar. The results suggest that effects of bitou bush invasion are mediated by the vegetation community. When bitou bush becomes abundant, community structure and functioning may be compromised.  相似文献   

17.
Abstract Invasive woody species frequently change the composition of the established vegetation and the properties of the soil under their canopies. Accordingly, invasion may well affect regenerative phases of the community, especially at the seed bank level, likely influencing community restoration. Pyracantha angustifolia (Rosaceae) is an invasive shrub in central Argentina that affects woody recruitment, particularly enhancing the recruitment of other exotic woody species. There is though no information regarding its effect on the soil seed bank within the invaded community. The present study was set up to gain further insight into the canopy effects of P. angustifolia. We aimed to assess whether the invasive shrub affects seed bank composition, richness and seed density as compared with the dominant native shrub Condalia montana (Rhamnaceae), and to relate the observed seed bank patterns with those of the established vegetation. We evaluated the composition of the germinable seed bank and the established vegetation under the canopy of 16 shrubs of P. angustifolia, 16 shrubs of C. montana, and in 16 control plots (10 m2) without shrub cover. The floristic composition of the seed bank differed among canopy treatments. However, seed bank richness did not differ significantly. There was an overall high seed density of exotic species throughout the study site, though exotic forbs showed significantly lower seed densities under the invasive shrub. Pyracantha angustifolia would not promote the incorporation of new species into the seed bank of the invaded community but rather favour the establishment of woody species that do not depend on seed banks. The absence of dominant woody species in the seed bank, the dominance of exotic forbs, and the high similarity between established exotic species and those present in the seed bank may surely affect community restoration following the main disturbances events observed in the region.  相似文献   

18.
We used seed bank analyses to investigate the role of dispersal in limiting invasion by Eurasian Lythrum salicaria within and among North American wetlands, and the changes in seed bank diversity associated with this invader. We compared the number and species composition of seedlings emerging from soil sampled in 11 uninvaded wetlands and paired uninvaded and invaded sites within 10 invaded wetlands under both seedling competition and noncompetitive conditions. Almost no L. salicaria emerged in samples from uninvaded wetlands, indicating dispersal limitation despite prodigious seed production in nearby wetlands. However L. salicaria emerged in all samples from uninvaded sites in invaded wetlands, suggesting environmental limits on establishment within invaded wetlands. Conditions that provided opportunities for seedlings to compete reduced survival of Typha spp. but not L. salicaria seedlings. However, this was due to species-specific differences in post-emergence mortality rather than response to competition. Competition did reduce seedling mass, but this effect did not differ among species. Species richness of emerging seedlings was lower for invaded than uninvaded wetlands. Lower seed bank richness may be a cause or consequence of L. salicaria invasion. Efforts to reduce seed dispersal to uninvaded wetlands would likely slow the spread of this invader.  相似文献   

19.
From 1992 to 1995 we experimentally evaluated the effectiveness of several revegetation treatments along a segment of Going-to-the-Sun Highway in Glacier National Park, U.S.A. This segment, reconstructed during the spring and summer of 1992, is bordered by fescue prairie vegetation and is known to be susceptible to invasion by several alien species, including Centaurea maculosa (spotted knapweed) and Phleum pratense (common timothy). We used a split plot study design to evaluate the effectiveness of herbicide and seeding treatments on assisting recovery of native flora and limiting the establishment of alien species. The herbicide treatment consisted of a yearly herbicide spray application of clopyralid (3,6-dichloropicolinic acid). Five seeding treatments were evaluated, three of which included an indigenous graminoid-forb seed mix. Percent canopy coverages of four species groups—alien graminoids, native graminoids, alien forbs, and native forbs—were determined in July 1995. In addition, community-level patterns in sprayed plots and unsprayed plots were compared with a reference site of native fescue prairie. Herbicide treatments decreased mean canopy coverage of alien forbs (treated = 4.2%, untreated = 23.4%) and increased mean canopy coverage of native graminoids slightly (treated = 6.3%, untreated = 4.0%). But herbicide treatments reduced mean coverage of native forbs (treated = 3.9%, untreated = 8.9%) and likely increased coverage of alien graminoids. Treatments that included a fall 1992 seed mix increased native graminoid coverages 2.8–4.6 times, although coverages were still lower than those attained by alien graminoids. Native and alien forb coverage appeared unaffected by seeding treatments. Species composition was less diverse in sprayed plots and more dominated by alien grasses than in unsprayed plots and the reference site. Areas for additional study are suggested, including seed bank assays to determine treatment effects on recruitment of alien versus native species and the use of native graminoids to create low-diversity communities with high canopy coverages to resist establishment of alien species.  相似文献   

20.
Invasive species are capable of causing change in native plant communities, but invasion is often associated with other anthropogenic impacts on natural areas, such as habitat fragmentation and associated dispersal limitation for native species. Consequently, invasive species removal alone may not always be sufficient to meet restoration objectives. We tested if invasion and dispersal limitation interact to limit plant community restoration within a forest fragment invaded by Euonymus fortunei. Removal of Euonymus alone did not lead to the recolonization of native plant species. However, planting seedlings increased total native cover in invaded, Euonymus removal, and uninvaded control treatments. The consistent establishment of native plant seedlings across all treatments indicates that Euonymus invasion may have limited ability to displace established plants. In contrast, plant species that we added as seed were unable to establish in invaded plots, indicating that Euonymus invasion limits recruitment of native plant species from seed. Over the course of our experiment, a number of setbacks and surprises occurred, including high levels of herbivory, a windstorm, and extreme drought, all of which likely limited restoration success. Overall, our results indicate that Euonymus may contribute to native species declines, but other factors are important. Thus, invasive species removal alone may not be sufficient to reestablish a diverse native plant community. Instead, impacts on natural areas may need to be mitigated along with invasive species removal for restoration to be successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号