首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accessibility of phosphodiester bonds in the DNA of four-way helical junctions has been probed with the nuclease DNase I. Regions of protection were observed on all four strands of the junctions, that tended to be longer on the strands that are exchanged between the coaxially stacked pairs of helices. The protected regions on the continuous strands of the stacked helices were not located exactly at the junction, but were displaced towards the 3' side of the strand. This is the region of backbone that becomes located in the major groove of the opposed helix in the non-crossed, right-handed structure for the junction, and might therefore be predicted to be protected against cleavage by an enzyme. However, the major grooves of the structure remain accessible to the much smaller probe dimethyl sulphate.  相似文献   

2.
Model for the interaction of DNA junctions and resolving enzymes.   总被引:6,自引:0,他引:6  
Four-way DNA junctions are thought to be important intermediates in a number of recombination processes. Resolution of these junctions occurs by cleavage of two strands of DNA to generate two duplex molecules. The interaction between DNA junctions and resolving enzymes appears to be largely structure-specific, reflecting a molecular recognition on a significant scale. We propose a working model for this interaction that takes account of the present state of knowledge of the structure of the DNA junction, and the substrate requirements of the enzymes. We note that three different enzymes introduce cleavages at phosphodiester bonds that are presented on one side of the molecule, suggesting that the enzymes selectively interact with this face of the junction. By forcing a junction of constant sequence to adopt one or other of the two possible antiparallel isomers, we show that the junction is cleaved in such a way as to suggest a constant mode of interaction with the protein that is dependent on structure rather than sequence. We propose that the feature that is recognized is a mutual inclination of two DNA helices at approximately 120 degrees. We show that a number of DNA substrates that contain similar inclined helices, such as a three-way junction, bulged duplexes and a duplex that is curved because of repeated runs of oligoadenine sequences, are each cleaved by phage T4 endonuclease VII. This mode of DNA-protein interaction could be significant in either recombination or DNA repair processes.  相似文献   

3.
Genetic recombination is a critical cellular process that promotes evolutionary diversity, facilitates DNA repair and underpins genome duplication. It entails the reciprocal exchange of single strands between homologous DNA duplexes to form a four-way branched intermediate commonly referred to as the Holliday junction. DNA molecules interlinked in this way have to be separated in order to allow normal chromosome transmission at cell division. This resolution reaction is mediated by structure-specific endonucleases that catalyse dual-strand incision across the point of strand cross-over. Holliday junctions can also arise at stalled replication forks by reversing the direction of fork progression and annealing of nascent strands. Resolution of junctions in this instance generates a DNA break and thus serves to initiate rather than terminate recombination. Junction resolvases are generally small, homodimeric endonucleases with a high specificity for branched DNA. They use a metal-binding pocket to co-ordinate an activated water molecule for phosphodiester bond hydrolysis. In addition, most junction endonucleases modulate the structure of the junction upon binding, and some display a preference for cleavage at specific nucleotide target sequences. Holliday junction resolvases with distinct properties have been characterized from bacteriophages (T4 endo VII, T7 endo I, RusA and Rap), Bacteria (RuvC), Archaea (Hjc and Hje), yeast (CCE1) and poxviruses (A22R). Recent studies have brought about a reappraisal of the origins of junction-specific endonucleases with the discovery that RuvC, CCE1 and A22R share a common catalytic core.  相似文献   

4.
DNA replication, recombination, and repair can result in formation of diverse branched DNA structures. Many large DNA viruses are known to encode DNA branch nucleases, but several of the expected activities have not previously been found among poxvirus enzymes. Vaccinia encodes an enzyme, A22 resolvase, which is known to be active on four-stranded DNA junctions (Holliday junctions) or Holliday junction-like structures containing three of the four strands. Here we report that A22 resolvase in fact has a much wider substrate specificity than previously appreciated. A22 resolvase cleaves Y-junctions, single-stranded DNA flaps, transitions from double strands to unpaired single strands ("splayed duplexes"), and DNA bulges in vitro. We also report site-directed mutagenesis studies of candidate active site residues. The results identify the likely active site and support a model in which a single active site is responsible for cleavage on Holliday junctions and splayed duplexes. Lastly, we describe possible roles for the A22 resolvase DNA-branch nuclease activity in DNA replication and repair.  相似文献   

5.
Holliday junctions are four-stranded DNA complexes that are formed during recombination and related DNA repair events. Much work has focused on the overall structure and properties of four-way junctions in solution, but we are just now beginning to understand these complexes at the atomic level. The crystal structures of two all-DNA Holliday junctions have been determined recently from the sequences d(CCGGGACCGG) and d(CCGGTACCGG). A detailed comparison of the two structures helps to distinguish distortions of the DNA conformation that are inherent to the cross-overs of the junctions in this crystal system from those that are consequences of the mismatched dG.dA base-pair in the d(CCGGGACCGG) structure. This analysis shows that the junction itself perturbs the sequence-dependent conformational features of the B-DNA duplexes and the associated patterns of hydration in the major and minor grooves only minimally. This supports the idea that a DNA four-way junction can be assembled at relatively low energetic cost. Both structures show a concerted rotation of the adjacent duplex arms relative to B-DNA, and this is discussed in terms of the conserved interactions between the duplexes at the junctions and further down the helical arms. The interactions distant from the strand cross-overs of the junction appear to be significant in defining its macroscopic properties, including the angle relating the stacked duplexes across the junction.  相似文献   

6.
Branched DNA molecules arise transiently as intermediates in genetic recombination or on extrusion of cruciforms from covalent circular DNA duplexes that contain palindromic sequences. The free energy of these structures relative to normal DNA duplexes is of interest both physically and biologically. Oligonucleotide complexes that can form stable branched structures, DNA junctions, have made it possible to model normally unstable branched states of DNA such as Holliday recombinational intermediates. We present here an evaluation of the free energy of creating four-arm branch points in duplex DNA, using a system of two complementary junctions and four DNA duplexes formed from different combinations of the same set of eight 16-mer strands. The thermodynamics of formation of each branched structure from the matching pair of intact duplexes have been estimated in two experiments. In the first, labeled strands are allowed to partition between duplexes and junctions in a competition assay on polyacrylamide gels. In the second, the heats of forming branched or linear molecules from the component strands have been determined by titration microcalorimetry at several temperatures. Taken together these measurements allow us to determine the standard thermodynamic parameters for the process of creating a branch in an otherwise normal DNA duplex. The free energy for reacting two 16-mer duplexes to yield a four-arm junction in which the branch site is incapable of migrating is + 1.1 (+/- 0.4) kcal mol-1 (at 18 degrees C, 10 mM-Mg2+). Analysis of the distribution of duplex and tetramer products by electrophoresis confirms that the free energy difference between the four duplexes and two junctions is small at this temperature. The associated enthalpy change at 18 degrees C is +27.1 (+/- 1.3) kcal mol-1, while the entropy is +89 (+/- 30) cal K-1 mol-1. The free energy for branching is temperature dependent, with a large unfavorable enthalpy change compensated by a favorable entropy term. Since forming one four-stranded complex from two duplexes should be an entropically unfavorable process, branch formation is likely to be accompanied by significant changes in hydration and ion binding. A significant apparent delta Cp is also observed for the formation of one mole of junction, +0.97 (+/-0.05) kcal deg-1 mol-1.  相似文献   

7.
Holliday junction-resolving enzymes are ubiquitous, structure-specific endonucleases that resolve four-way DNA junctions by the introduction of paired nicks in opposing strands, and are required for homologous recombination, double-strand break repair, recombination-dependent restart of stalled or collapsed DNA replication forks, and phage DNA processing. Here, we present the first steady-state kinetic characterisation of a junction-resolving enzyme; the Hje endonuclease from Sulfolobus solfataricus. We demonstrate that substrate turnover by Hje is sequence-independent and limited largely by the rate of cleavage of the phosphodiester bonds of the bound Holliday junction substrate, rather than substrate association or product dissociation. Reaction rates under multiple turnover conditions compare favourably with type II restriction enzymes. These properties, coupled with a high level of specificity for four-way junctions over all other DNA substrates, make Hje a suitable enzyme for applications requiring the detection and cleavage of Holliday junctions in vitro.  相似文献   

8.
Human Mus81-associated endonuclease cleaves Holliday junctions in vitro.   总被引:1,自引:0,他引:1  
Mus81, a protein with homology to the XPF subunit of the ERCC1-XPF endonuclease, is important for replicational stress tolerance in both budding and fission yeast. Human Mus81 has associated endonuclease activity against structure-specific oligonucleotide substrates, including synthetic Holliday junctions. Mus81-associated endonuclease resolves Holliday junctions into linear duplexes by cutting across the junction exclusively on strands of like polarity. In addition, Mus81 protein abundance increases in cells following exposure to agents that block DNA replication. Taken together, these findings suggest a role for Mus81 in resolving Holliday junctions that arise when DNA replication is blocked by damage or by nucleotide depletion. Mus81 is not related by sequence to previously characterized Holliday junction resolving enzymes, and it has distinct enzymatic properties that suggest it uses a novel enzymatic strategy to cleave Holliday junctions.  相似文献   

9.
Disulfide crosslinking via thiol-disulfide interchange was applied to quantitate the relative flexibility contributed by nicks and single-stranded gaps in an RNA structure. An RNA duplex comprised of three strands was constructed containing the disulfide crosslink precursors 1 and 2 at opposite ends of the duplex on opposite strands. The third strand was of varying length to yield a nick or single-stranded gaps of 1, 2, or 3 nt. Crosslinking rates Indicated relative flexibilities of the resulting two-helix junctions. Crosslinking in the nicked duplex occurred two orders of magnitude slower than in a duplex containing a 3-nt gap. Rates of crosslinking in duplexes with 3-and 2-nt gaps showed only modest dependence on the gap sequence. Many natural RNAs, including ribozymes, contain two-helix junctions related to the model system described here. The data suggest that two-helix junctions containing a nick in one strand will retain substantial rigidity, whereas one or more single-stranded nucleotides at a two-helix junction allow significant flexibility.  相似文献   

10.
M A Azaro  A Landy 《The EMBO journal》1997,16(12):3744-3755
Lambda site-specific recombination proceeds by a pair of sequential strand exchanges that first generate and then resolve a Holliday junction intermediate. A family of synthetic Holliday junctions with the branch point constrained to the center of the 7 bp overlap region was used to show that resolution of the top strands and resolution of the bottom strands are symmetrical but stereochemically distinct processes. Lambda integrase is sensitive to isomeric structure, preferentially resolving the pair of strands that are crossed in the protein-free Holliday junction. At the branch point of stacked immobile Holliday junctions, the number of purines is preferentially maximized in the crossed (versus continuous) strands if there is an inequality of purines between strands of opposite polarity. This stacking preference was used to anticipate the resolution bias of freely mobile junctions and thereby to reinforce the conclusions with monomobile junctions. The results provide a strong indication that in the complete recombination reaction a restacking of helices occurs between the top and bottom strand exchanges.  相似文献   

11.
We have used the technique of phosphate transfer analysis to test for the presence of phosphodiester bonds linking ribonucleotides (on the 5′ side) to deoxyribonucleotides (on the 3′ side) in DNA newly synthesized within lysates or purified nuclei of mammalian cells. We have found that such covalent junctions between RNA and DNA are present at a frequency of one junction per newly synthesized DNA strand. The junctions are located close to the ends of the nascent DNA strands. The stretches of RNA at the junction are very short compared to the stretches of DNA. These properties are consistent with the conclusion by Reichard, Eliasson, and Söderman (1974) that short stretches of RNA are present on the 5′ ends of nascent DNA strands produced during replication of polyoma virus.  相似文献   

12.
DNA replication forks pause in front of lesions on the template, eventually leading to cytotoxic chromosomal rearrangements. The in vivo structure of damaged eukaryotic replication intermediates has been so far elusive. Combining electron microscopy (EM) and two-dimensional (2D) gel electrophoresis, we found that UV-irradiated S. cerevisiae cells uncouple leading and lagging strand replication at irreparable UV lesions, thus generating long ssDNA regions on one side of the fork. Furthermore, small ssDNA gaps accumulate along replicated duplexes, likely resulting from repriming events downstream of the lesions on both leading and lagging strands. Translesion synthesis and homologous recombination counteract gap accumulation, without affecting fork progression. The DNA damage checkpoint contributes to gap repair and maintains a replication-competent fork structure. We propose that the coordinated action of checkpoint, recombination, and translesion synthesis-mediated processes at the fork and behind the fork preserves the integrity of replicating chromosomes by allowing efficient replication restart and filling the resulting ssDNA gaps.  相似文献   

13.
We have proposed previously that, in Escherichia coli, blockage of replication forks can lead to the reversal of the fork. Annealing of the newly synthesized strands creates a double-stranded end adjacent to a Holliday junction. The junction is migrated away from the DNA end by RuvAB and can be cleaved by RuvC, while RecBCD is required for the repair of the double-stranded tail. Consequently, the rep mutant, in which replication arrests are frequent and fork reversal occurs, requires RecBCD for growth. We show here that the combination of sbcB sbcCD null mutations restores the viability to rep recBC mutants by activation of the RecF pathway of recombination. This shows that the proteins belonging to the RecF pathway are able to process the DNA ends made by the replication fork reversal into a structure that allows recombination-dependent replication restart. However, we confirm that, unlike sbcB null mutations, sbcB15, which suppresses all other recBC mutant defects, does not restore the viability of rep recBC sbcCD strains. We also show that ruvAB inactivation suppresses the lethality and the formation of double-stranded breaks (DSBs) in a rep recBC recF strain, totally deficient for homologous recombination, as well as in rep recBC mutants. This confirms that RuvAB processing of arrested replication forks is independent of the presence of recombination intermediates.  相似文献   

14.
The blockage of replication forks can result in the disassembly of the replicative apparatus and reversal of the fork to form a DNA junction that must be processed in order for replication to restart and sister chromatids to segregate at mitosis. Fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4 are endonucleases that have been implicated in the processing of aberrant DNA junctions formed at stalled replication forks. Here we have investigated the activity of purified Mus81-Eme1 and Mus81-Mms4 on substrates that resemble DNA junctions that are expected to form when a replication fork reverses. Both enzymes cleave Holliday junctions and substrates that resemble normal replication forks poorly or not at all. However, forks where the equivalents of either both the leading and lagging strands or just the lagging strand are juxtaposed at the junction point, or where either the leading or lagging strand has been unwound to produce a fork with a single-stranded tail, are cleaved well. Cleavage sites map predominantly between 3 and 6 bp 5' of the junction point. For most substrates the leading strand template is cleaved. The sole exception is a fork with a 5' single-stranded tail, which is cleaved in the lagging strand template.  相似文献   

15.
DNase I cleavage of branched DNA molecules   总被引:6,自引:0,他引:6  
We report here a potentially useful signature of branched DNA structures. The base 5' to the branch and the five bases flanking the 3' side of the branch site are protected from cleavage by DNase I in both three- and four-arm branched DNA molecules. Our procedure is to measure the cleavage profile for each 5' -labeled strand in a control duplex and compare this with that of the same strand in a branched structure under conditions yielding less than one cut per strand. The resulting cleavage pattern in an immobile four-arm junction is roughly 2-fold symmetric, consistent with the pattern of Fe(II).EDTA-induced cleavage that has been observed previously. In the three-arm junction, the DNase I cleavage pattern is asymmetric, indicating lack of 3-fold symmetry. A variable pattern of protection occurs to the 5' side of the branch in some strands only for both three- and four-arm junctions, extending 2-4 residues 5' to the branch.  相似文献   

16.
The formation and subsequent resolution of Holliday junctions are critical stages in recombination. We describe a new Escherichia coli endonuclease that resolves Holliday intermediates by junction cleavage. The 14 kDa Rus protein binds DNA containing a synthetic four-way junction (X-DNA) and introduces symmetrical cuts in two strands to give nicked duplex products. Rus also processes Holliday intermediates made by RecA into products that are characteristic of junction resolution. The cleavage activity on X-DNA is remarkably similar to that of RuvC. Both proteins preferentially cut the same two strands at the same location. Increased expression of Rus suppresses the DNA repair and recombination defects of ruvA, ruvB and ruvC mutants. We conclude that all ruv strains are defective in junction cleavage, and discuss pathways for Holliday junction resolution by RuvAB, RuvC, RecG and Rus.  相似文献   

17.
Holliday junctions are intermediate structures that are formed and resolved during the process of genetic recombination. To investigate the interaction of junction-resolving nucleases with synthetic Holliday junctions that contain homologous arm sequences, we constructed substrates in which the junction point was free to branch migrate through 26 base-pairs of homology. In the absence of divalent cations, we found that both phage T4 endonuclease VII and phage T7 endonuclease I bound the synthetic junctions to form specific protein-DNA complexes. Such complexes were not observed in the presence of Mg2+, since the Holliday junctions were resolved by the introduction of symmetrical cuts in strands of like polarity. The major sites of cleavage were identified and found to occur within the boundaries of homology. T4 endonuclease VII showed a cleavage preference for the 3' side of thymine bases, whereas T7 endonuclease I preferentially cut the DNA between two pyrimidine residues. However, cleavage was not observed at all the available sites, indicating that in addition to their structural requirements, the endonucleases show strong site preferences.  相似文献   

18.
Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300), arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability.  相似文献   

19.
T7 endonuclease I binds specifically to four-way junctions in duplex DNA and promotes their resolution into linear duplexes. Under conditions in which the nuclease activity is blocked by the absence of divalent cations, the enzyme forms a distinct protein-DNA complex with the junction, as detected by gel retardation and filter binding assays. The formation of this complex is structure-specific and contrasts with the short-lived binding complexes formed on linear duplex DNA. The binding complex between T7 endonuclease I and a synthetic Holliday junction analog has been probed with hydroxyl radicals. The results indicate that the nuclease binds all four strands about the junction point.  相似文献   

20.
The advance of a DNA replication fork requires an unwinding of the parental double helix. This in turn creates a positive superhelical stress, a (+)-DeltaLk, that must be relaxed by topoisomerases for replication to proceed. Surprisingly, partially replicated plasmids with a (+)-DeltaLk were not supercoiled nor were the replicated arms interwound in precatenanes. The electrophoretic mobility of these molecules indicated that they have no net writhe. Instead, the (+)-DeltaLk is absorbed by a regression of the replication fork. As the parental DNA strands re-anneal, the resultant displaced daughter strands base pair to each other to form a four-way junction at the replication fork, which is locally identical to a Holliday junction in recombination. We showed by restriction endonuclease digestion that the junction can form at either the terminus or the origin of replication and we visualized the structure with scanning force microscopy. We discuss possible physiological implications of the junction for stalled replication in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号