首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete amino acid sequence of the 50 kDa fragment of subfragment-1 from adult chicken pectoralis muscle myosin was determined. It contained 431 residues including an epsilon-N-trimethyllysine at position 346. The 431-residue sequence corresponds to the sequence of residues 206 to 639 of chicken embryonic breast muscle myosin heavy chain which was predicted from the nucleotide sequence of the cDNA by Molina et al. [Molina, M. I., Kropp, K.E., Gulick, J., & Robbins, J. (1987) J. Biol. Chem. 262, 6478-6488]. Comparing the two sequences, 23 amino acid substitutions and three deletions/insertions are recognized.  相似文献   

2.
Measurement of the cAMP-dependent protein kinase "activity ratio" was introduced by Corbin et al. (Corbin, J.D., Soderling, T.R., and Park, C.R. (1973) J. Biol. Chem. 248, 1813-1821) and has been used by a large number of investigators as an index of the activation of this enzyme in the intact cell. This communication reports that with the typical conditions used the dissociation of the protein kinase is not blocked throughout the extraction. This is demonstrated, with glucagon-stimulated rat liver as the example tissue, by the addition of exogenous protein kinase. These data call into question the meaning of results reported using this experimental approach.  相似文献   

3.
A conserved cysteine in molybdenum oxotransferases   总被引:5,自引:0,他引:5  
The amino acid sequences of peptides derived from rat hepatic sulfite oxidase have been determined by a combination of amino acid analysis and Edman degradation of the purified protein. The data obtained showed the rat liver enzyme contained 3 cysteine residues which was confirmed by thiol modification studies using 4,4'-dithiodipyridine of the native enzyme. Combining these data with that previously published for chicken liver sulfite oxidase (Neame, P. J., and Barber, M. J. (1989) J. Biol. Chem. 264, 20894-20901) indicates that 2 cysteines (Cys186 and Cys430, based upon the numbering for the chicken sequence) are conserved in both chicken and rat liver enzymes with all the cysteine residues being present in the molybdenum-containing domain. Further comparison of the sequences of the molybdenum domains of rat and chicken liver sulfite oxidase with the amino acid sequences published for the molybdenum domains of a variety of assimilatory nitrate reductases suggests that only a single cysteine residue (Cys186) is conserved in all these enzymes, indicating that it may play a role in the binding of Mo-pterin to the protein.  相似文献   

4.
Recently two reports [J. A. Robertson et al. (1986) J. Biol. Chem. 261, 15794-15799 and R. M. Bayney et al. (1987) J. Biol. Chem. 262, 572-575] have appeared concerning the nucleotide sequence of quinone reductase cDNA clones. Although the cDNA clones are virtually identical, they diverge in the 5' region that encodes the NH2 terminus of the protein. In order to clarify the sequence of this region, we have isolated quinone reductase clones from a rat genomic library using a cDNA clone, pDTD55, isolated and characterized by our laboratory. We have determined the sequence of exons 1 and 2 of the structural gene by double-stranded sequencing using oligonucleotide primers. The sequence of exons 1 and 2 of the quinone reductase structural gene along with our previous nucleotide sequence analysis of pDTD55 as well as conventional amino acid sequence analysis of the purified protein indicates that quinone reductase is composed of 274 amino acids with a molecular weight of 30,946. These data agree with the published sequence of lambda NMOR1 reported by Robertson et al.  相似文献   

5.
We investigated immunohistochemically the localization of p33, an endogenous substrate protein for an arginine-specific ADP-ribosyltransferase in chicken liver. Polymorphonuclear-pseudo-eosinophilic granulocytes (heterophils) in interlobular connective tissues of the liver were exclusively and strongly stained with the antibody against p33. Strong reactivity was associated with granules in cytoplasm of the heterophils. When the chicken liver nuclear fraction was washed, the transferase activity was released into the 600 x g supernatant fraction while a nuclear enzyme poly(ADP-ribose) synthetase was retained in the pellet fraction. These results indicate that p33 and probably also ADP-ribosyltransferase, found in the liver nuclear fraction [Tanigawa et al. (1984) J. Biol. Chem. 259, 2022-2029, Mishima et al. (1988) Eur. J. Biochem. 179, 267-273], originate from interlobular heterophils of the chicken liver.  相似文献   

6.
Alkaline phosphatase of matrix vesicles isolated from fetal bovine epiphyseal cartilage was purified to apparent homogeneity using monoclonal antibody affinity chromatography. The enzyme from the butanol extract of matrix vesicles bound specifically to the immobilized antibody-Sepharose in the presence of 2% Tween 20 whereas the major portion of nonspecific protein was removed by this single step. Of various agents tested, 0.6 M 2-amino-2-methyl-1-propanol, pH 10.2, was the most effective in eluting 80-100% of the enzyme initially applied. Both Tween 20 and 2-amino-2-methyl-1-propanol associated with the eluted enzyme were effectively removed by the sequential application of DEAE-cellulose and Sepharose CL-6B chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme preparation treated with sodium dodecyl sulfate and mercaptoethanol showed the presence of a dominant band (using silver staining) corresponding to a molecular weight of 81,000. This molecular weight was nearer reported values for rat liver (Ohkubo, A., Langerman, N., and Kaplan, M. M. (1974) J. Biol Chem. 249, 7174-7180) and porcine kidney (Cathala, G., Brunel, C., Chapplet-Tordo, D., and Lazdunski, M. (1975) J. Biol. Chem. 250, 6040-6045) alkaline phosphatase, than to previously reported values for chicken (Cyboron, G. W., and Wuthier, R. E. (1981) J. Biol. Chem. 256, 7262-7268) and fetal calf (Fortuna, R., Anderson, H. C., Carty, R. P., and Sajdera, S. W. (1980) Calcif. Tissue Int. 30, 217-225) cartilage matrix vesicle alkaline phosphatase. The purified alkaline phosphatase was activated by micromolar Mg2+. The amino acid composition of cartilage alkaline phosphatase was found to be similar to that previously described for porcine kidney (Wachsmuth, E. D., and Hiwada, K. (1974) Biochem. J. 141, 273-282). Double immunoprecipitation data indicated that monoclonal antibody against cartilage alkaline phosphatase cross-reacted with fetal bovine liver or kidney enzyme but failed to react with calf intestinal or rat cartilage enzyme. Thus these observations suggest that alkaline phosphatase of matrix vesicles from calcifying epiphyseal cartilage is a liver-kidney-bone isozyme.  相似文献   

7.
An acylamino acid-releasing enzyme purified from porcine liver showed peptidase activity above pH 8. Of the non-acylated peptides tested, this peptidase activity was only exerted on peptides with Gly or Ala at their N-termini. These results are consistent with the previous observations for similar enzymes from sheep red blood cells (Witheiler, J. & Wilson, D.B. (1972) J. Biol. Chem. 247, 2217-2221) and beef liver (Gade, W. & Brown, J.L. (1978) J. Biol. Chem. 253, 5012-5018). The pH dependence of the peptidase activity showed that only peptides with uncharged N-terminal amino acids such as glycyl- or alanyl-peptides act as substrates for the enzyme. These results suggest that the peptidase activity seen for the acylamino acid-releasing enzyme is an intrinsic activity of the enzyme that is triggered by misrecognition of uncharged smaller N-terminal amino acids in non-acylated peptides as acyl groups at higher pHs.  相似文献   

8.
We have constructed a nearly full length cDNA clone, pGTA/C44, complementary to the rat liver glutathione S-transferase Yb1 mRNA. The nucleotide sequence of pGTA/C44 has been determined, and the complete amino acid sequence of the Yb1 subunit has been deduced. The cDNA clone contains an open reading frame of 654 nucleotides encoding a polypeptide comprising 218 amino acids with Mr = 25,919. The NH2-terminal sequence deduced from DNA sequence analysis of pGTA/C44 is in agreement with the first 19 amino acids determined for purified glutathione S-transferase A, a Yb1 homodimer, by Frey et al. (Frey, A. B., Friedberg, T., Oesch, F., and Kreibich, G. (1983) J. Biol. Chem. 258, 11321-11325). The DNA sequence of pGTA/C44 shares significant sequence homology with a cDNA clone, pGT55, which is complementary to a mouse liver glutathione S-transferase (Pearson, W. R., Windle, J. J., Morrow, J. F., Benson, A. M., and Talalay, P. (1983) J. Biol. Chem. 258, 2052-2062). We have also determined 37 nucleotides of the 5'-untranslated region and 348 nucleotides of the 3'-untranslated region of the Yb1 mRNA. The Yb1 mRNA and subunit do not share any sequence homology with the rat liver glutathione S-transferase Ya or Yc mRNAs or their corresponding subunits. These data provide the first direct evidence that the Yb1 subunit is derived from a gene or gene family which is distinct from the Ya-Yc gene family.  相似文献   

9.
Mammalian phosphoribosyl pyrophosphate (PRPP) synthetase has been extensively investigated. However, considerable ambiguity remains concerning its physical and regulatory properties. We purified PRPP synthetase from rat liver and studied some of the physical properties, in parallel with cloning experiments (Taira, M. et. al. [1987] J. Biol. Chem. 262, 14867-14870). 1) The enzyme was purified to a specific activity of 7,280 milliunits/mg, the highest value in the literature for a mammalian PRPP synthetase. The apparent molecular mass was over 1,000 kDa. 2) The final preparation contained 34-kDa, 38-kDa, and 40-kDa protein species, as analyzed by SDS gel electrophoresis. 3) Further attempts at separation using conventional procedures only led to a co-purification of the components. Thus, the purified enzyme appears to exist as complex aggregates composed of heterogeneous components. 4) Gel filtration of the enzyme in the presence of 1 M MgCl2 isolated part of the 34-kDa component, free of other species. The preparation was catalytically active, indicating that this component is the catalytic subunit. 5) The amino acid composition of the 34-kDa subunit and the amino acid sequences of its N-terminal region and of two tryptic peptides were determined. The results are in accord with the results of cDNA analyses.  相似文献   

10.
It was recently shown that the mitochondrial isozyme of heart creatine kinase binds to cardiolipin on the outer half of the inner membrane [Müller, M., et al. (1985) J. Biol. Chem. 260, 3839-3843]. The enzyme has now been extracted and purified to homogeneity from rat heart mitochondria, and cleaved with CNBr. The fragments have been separated on an FPLC system using a Mono Q HR 5/5 column. Only one of these binds to cardiolipin-containing liposomes and has thus been identified as the cardiolipin-binding domain of the enzyme. Its amino acid sequence has been determined. The fragment contains 25 amino acids and corresponds to the N-terminal region of the protein. The binding of the fragment of cardiolipin-containing liposomes was inhibited by adriamycin. Another and larger CNBr fragment could be specifically labelled with periodate-oxidized (di-aldehyde) ATP and has thus been identified as the ATP-binding domain. Chemical modification of the basic amino acids Lys and Arg of the enzyme abolished its binding to cardiolipin.  相似文献   

11.
Tumor-associated aldehyde dehydrogenase (T-ALDH) is strongly expressed in hepatocellular carcinoma (HCC) but undetectable in normal liver. In the present study, this enzyme from human HCC, HCC T-ALDH, was purified and the partial amino acid sequences (384 residues) determined by direct protein sequencing matched the amino acid sequence (453 residues) deduced from cloned HCC T-ALDH cDNAs with an open reading frame. The coding sequences of HCC T-ALDH cDNA, human stomach ALDH3A1 cDNA [Hsu et al., J. Biol. Chem. 267 (1992) 3030-3037] and human squamous cell carcinoma (SCC) T-ALDH cDNA (Schuuring et al., GenBank I.D. M74542) matched one another except for discrepancies at four positions, with consequent P12R, I27F and S134A substitutions. R and A were found in HCC and SCC T-ALDHs, whereas P and S were present in stomach ALDH3A1. To confirm that these discrepancies would have general occurrence, coding sequences of HCC T-ALDH cDNAs from six patients and stomach ALDH3A1 cDNAs from two individuals were examined and all were found to encode ALDH3A1 having R, I and A at protein positions 12, 27 and 134, respectively, indicating HCC T-ALDH to be variant ALDH3A1 which is common in human stomach tissues.  相似文献   

12.
An improved purification of the purple acid phosphatase from sweet potatoes has been developed, and the properties of the enzyme have been reexamined. Contrary to previous reports, (e.g., Y. Sugiura, et al., J. Biol. Chem., 256, 10664-10670 (1981) ), the enzyme contains two moles of iron and insignificant amounts of manganese. The specific activity of the iron-containing preparations is ca. 14 times higher than that reported previously for the purported "Mn(III)" enzyme. The sweet potato purple acid phosphatase does indeed bind manganese, but it can be removed by dialysis with no changes in specific activity or spectral properties.  相似文献   

13.
S Bon  J Y Chang  A D Strosberg 《FEBS letters》1986,209(2):206-212
We have determined partial N-terminal sequences of acetylcholinesterase (AChE) catalytic subunits from Torpedo marmorata electric organs and from bovine caudate nucleus. We obtain identical sequences (23 amino acids) for the soluble ('low-salt-soluble' or LSS fraction) and particulate ('detergent-soluble', or DS fraction) amphiphilic dimers (G2 form) and for the asymmetric, collagen-tailed forms ('high-salt-soluble', or HSS fraction, A12 + A8 forms). There are two amino acid differences, at position 3 (Asp/His) and 20 (Ile/Val), with the sequences obtained for T. californica by MacPhee-Quigley et al. [(1985) J. Biol. Chem. 260, 12185-12189] for the soluble G2 form and the lytic G4 form which is derived from asymmetric AChE. The bovine sequence (12 amino acids) presents an identity of 4 amino acids (Glu-Leu-Leu-Val) with that of Torpedo, at positions 5-8 (Torpedo) and 7-10 (bovine). There is also a clear homology with the sequence of human butyrylcholinesterase [(1986) Lockridge et al. J. Biol. Chem., in press] indicating that these enzymes probably derive from a common ancestor.  相似文献   

14.
The rate of transfer of amino acid from enzyme-bound aminoacyl adenylate to tRNA has been compared with the rate of esterification of free amino acid. The approach of L?vgren et al. (L?vgren, T. N. E., Heinonen, J., and Loftfield, R. B. (1975) J. Biol. Chem. 250, 3854-3860) was used, with 14C in the aminoacyl adenylate and 3H in the free amino acid and with both the lysine and isoleucine systems of Escherichia coli. In both systems kinetic analyses show more rapid transfer from the preformed enzyme complex when interference by the back reaction with inorganic pyrophosphate was eliminated. Parallel experiments, in which the amount of enzyme complex was measured, confirmed that aminoacyl adenylate is an intermediate in both systems. No evidence was found for an alternative mechanism.  相似文献   

15.
Basic carboxypeptidase activity was released from human placental membranes on treatment with phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. The enzyme was successively purified to homogeneity by SDS-polyacrylamide gel electrophoresis. The molecular nature and some catalytic properties of the purified enzyme revealed that it is identical with recently described basic carboxypeptidase M (R.A. Skidgel et al. J. Biol. Chem. 264 (4) 1989 2236-2241).  相似文献   

16.
CRM 228 (T. Uchida, A. M. Pappenheimer, and R. Greany, J. Biol. Chem. 248:3838-3844, 1973), a mutant form of diphtheria toxin which completely lacks ADP-ribosyltransferase activity, contains five amino acid substitutions. The two amino acid changes that fall within the A chain of the toxin (G79D and E162K) were separately analyzed by substituting a variety of other amino acids at these sites. The substitution at position 79 (G79D) singularly appears to account for the loss of enzymatic activity found in CRM 228.  相似文献   

17.
Na,K-ATPase from rectal glands of Squalus acanthias has been subjected to proteolysis with trypsin. The E1- and E2-forms of the enzyme can be distinguished from the inactivation patterns at low trypsin concentrations, as previously seen with kidney enzyme. Extensive degradation by trypsin in the presence of 5 mM Rb+ yields membrane fragments with a 19 kDa peptide as the major proteolytic fragment of the alpha-subunit. The sequence of the N-terminal 40 residues of this peptide is almost identical to that of a similar proteolytic fragment isolated by Capasso et al. (Capasso, J.M., Hoving, S., Tal, D.M., Goldshleger, R. and Karlish, S.J.D. (1992) J. Biol. Chem. 267, 1150-1158) using kidney Na,K-ATPase. Rb+ occlusion can be fully retained under these circumstances, supporting the findings with kidney enzyme that only minor parts of the alpha-subunit are required to form a functional occlusion-site.  相似文献   

18.
Fenton chemistry [Fenton (1894) J. Chem. Soc. 65, 899-910] techniques were employed to identify the residues involved in metal binding located at the active sites of restriction endonucleases. This process uses transition metals to catalytically oxidize the peptide linkage that is in close proximity to the amino acid residues involved in metal ligation. Fe2+ was used as the redox-active transition metal. It was expected that Fe2+ would bind to the endonucleases at the Mg2+-binding site [Liaw et al. (1993) Biochemistry 32, 7999-4003; Ermácora et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 6383-6387; Soundar and Colman (1993) J. Biol. Chem. 268, 5264-5271; Wei et al. (1994) Biochemistry 33, 7931-7936; Ettner et al. (1995) Biochemistry 34, 22-31; Hlavaty and Nowak (1997) Biochemistry 36, 15515-15525). Fe2+-mediated oxidation was successfully performed on TaqI endonulease, suggesting that this approach could be applied to a wide array of endonucleases [Cao and Barany (1998) J. Biol. Chem. 273, 33002-33010]. The restriction endonucleases BamHI, FokI, BglI, BglII, PvuII, SfiI, BssSI, BsoBI, EcoRI, EcoRV, MspI, and HinP1I were subjected to oxidizing conditions in the presence of Fe2+ and ascorbate. All proteins were inactivated upon treatment with Fe2+ and ascorbate. BamHI, FokI, BglI, BglII, PvuII, SfiI, BssSI, and BsoBI were specifically cleaved upon treatment with Fe2+/ascorbate. The site of Fe2+/ascorbate-induced protein cleavage for each enzyme was determined. The Fe2+-mediated oxidative cleavage of BamHI occurs between residues Glu77 and Lys78. Glu77 has been shown by structural and mutational studies to be involved in both metal ligation and catalysis [Newman et al. (1995) Science 269, 656-663; Viadiu and Aggarwal (1998) Nat. Struct. Biol. 5, 910-916; Xu and Schildkraut (1991) J. Biol. Chem. 266, 4425-4429]. The sites of Fe2+/ascorbate-induced cleavage for PvuII, FokI, BglI, and BsoBI agree with the metal-binding sites identified in their corresponding three-dimensional structures or from mutational studies [Cheng et al. (1994) EMBO J. 13, 3297-3935; Wah et al. (1997) Nature 388, 97-100; Newman et al. (1998) EMBO J. 17, 5466-5476; Ruan et al. (1997) Gene 188, 35-39]. The metal-binding residues of BglII, SfiI, and BssSI are proposed based on amino acid sequencing of their Fe2+/ascorbate-generated cleavage fragments. These results suggest that Fenton chemistry may be a useful methodology in identifying amino acids involved in metal binding in endonucleases.  相似文献   

19.
A cDNA clone of silkworm (Bombyx mori) larval hemolymph antitrypsin (sw-AT) has been isolated from a fat body cDNA library. The cDNA has an open reading frame which codes a 392-amino acid residue polypeptide comprising a 16-residue signal peptide and a 376-residue mature sw-AT of Mr 41,805. The reactive site of sw-AT for inhibition of bovine trypsin [Sasaki, T. et al. (1987) J. Biochem. 102, 433-441] was identified as Lys343-Val344. Alignment of the sw-AT amino acid sequence with those of 11 members of the serpin superfamily of proteins clearly confirmed the homology of sw-AT with serpins. The amino acid sequence of sw-AT is 56% identical with that of the proteinase inhibitor from a lepidopteron, Manduca sexta [Kanost, M.R. et al. (1989) J. Biol. Chem. 264, 965-972], but the sequence around the reactive site shows no homology and the inhibitory specificity for proteinases is very different.  相似文献   

20.
Primary structure of a ribonuclease from bullfrog (Rana catesbeiana) liver   总被引:1,自引:0,他引:1  
A pyrimidine base-specific ribonuclease was purified from bullfrog (Rana catesbeiana) liver by means of CM-cellulose column chromatography and affinity chromatography on heparin-Sepharose CL-6B, which gave single band on SDS-slab electrophoresis. The primary structure of the bullfrog liver RNase was determined. It consisted of 111 amino acid residues, including 8 half-cystine residues. From the sequence, it was concluded that three disulfide bridges in RNase A were conserved in the bullfrog RNase, that a disulfide bridge in RNase A [Cys65-Cys126 (RNase A numbering)] was deleted, and that a new disulfide bridge was created in the C-terminal part of the enzyme. In this frog RNase, the amino acid residues thought to be essential for catalysis in bovine pancreatic RNase A were conserved except for Asp121 (RNase A numbering). The sequence homology of the bullfrog liver RNase with bovine pancreatic RNase A was 30.6%. The sequence of bullfrog liver RNase was very similar to those of lectins obtained from bullfrog egg by Titani et al. [Biochemistry (1988) 26, 2189-2194] and R. japonica egg by Kamiya et al. [Seikagaku (in Japanese) (1989) 60, 733; and personal communication from Kamiya, Y., Oyama, F., Oyama, R., Sakakibara, F., Nitta, K., Kawauchi, H., and Titani, K.]. The sequence homology between the bullfrog liver RNase and the two lectins was 70.2 and 64.8%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号