首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V Litwin  W Jackson    C Grose 《Journal of virology》1992,66(6):3643-3651
The varicella-zoster virus (VZV) genome contains 70 reading frames (ORF), 5 of which encode the glycoproteins gpI, gpII, gpIII, gpIV, and gpV. ORF 67 and 68 lie adjacent to each other in the unique short region of the VZV genome and code for gpIV and gpI, respectively. These two genes, which are contained within the HindIII C fragment of the VZV genome, were subcloned in the correct orientation downstream from the promoter regions of the eukaryotic expression vectors pCMV5 and pBJ. After transfection, 5 to 20% of the Cos cells bound antibody specific for the given glycoprotein. In this study, it was shown that only the cells transfected with the gpI construct bound to the Fc fragment of human immunoglobulin G. Neither the transfected gpIV gene product nor the vector only bound to the Fc fragment. Thus, VZV gpI is confirmed to be the VZV-encoded Fc-binding glycoprotein. Like the wild-type form of gpI expressed in VZV-infected cells, gpI precipitated from transfected cells contained both N-linked and O-linked glycans and was heavily sialated. In addition, the transfected gpI gene product was phosphorylated both in cell culture and in protein kinase assays by mammalian casein kinases I and II. Extensive computer-assisted analyses of the VZV gpI sequence, as well as those of alphaherpesviral homolog glycoproteins, disclosed properties similar to those of other cell surface receptors; these included (i) exocytoplasmic regions rich in cysteine residues, (ii) membrane-proximal regions with potential O-linked glycosylation sites, and (iii) cytoplasmic domains with consensus phosphorylation sites.  相似文献   

2.
To localize the genes for the major glycoproteins of equine herpesvirus 1 (EHV-1), a library of the EHV-1 genome was constructed in the lambda gt11 expression vector. Recombinant bacteriophage expressing EHV-1 glycoprotein epitopes as fusion products with beta-galactosidase were detected by immunoscreening with monoclonal antibodies specific for each of six EHV-1 glycoproteins. Seventy-four recombinant lambda gt11 clones reactive with EHV-1 monoclonal antibodies were detected among 4 X 10(5) phage screened. Phage expressing determinants on each of the six EHV-1 glycoproteins were represented in the library. Herpesviral DNA sequences contained in lambda gt11 recombinants expressing epitopes of EHV-1 glycoproteins were used as hybridization probes for mapping insert sequences on the viral genome. Genes for five EHV-1 glycoproteins (gp2, gp10, gp13, gp14, and gp21/22a) mapped to the genome L component; only one EHV-1 glycoprotein (gp17/18) was expressed from the unique S region of the genome where genes of several major glycoproteins of other herpesviruses have been located. Two glycoproteins of EHV-1, gp13 and gp14, mapped to positions colinear with genes of major glycoproteins identified in several other alphaherpesviruses (gC- and gB-like glycoproteins, respectively). The genomic locations of other EHV-1 glycoproteins indicated the existence of major glycoproteins of EHV-1 (gp2, gp10, and gp21/22a) for which no genetic homologs have yet been detected in other herpesviruses. The results confirm the general utility of the lambda gt11 expression system for localizing herpesvirus genes and suggest that the genomic positioning of several high-abundance glycoproteins of EHV-1 may be different from that of the prototype alphaherpesvirus, herpes simplex virus.  相似文献   

3.
Use of conversion adaptors to clone antigen genes in lambda gt11   总被引:7,自引:0,他引:7  
A strategy has been devised and tested to employ EcoRI conversion adaptors for cloning 5' cohesive-ended restriction fragments into the unique EcoRI site of the lambda gt11 expression vector. Five lambda gt11 chromosomal libraries were constructed with Rickettsia tsutsugamushi genomic DNA digested with restriction enzymes generating five different 5' cohesive ends. Recombinant phage yields as high as 10(7) plaque forming units were achieved without amplification of the five libraries. Sequences encoding epitopes of all eight R. tsutsugamushi polypeptide antigens, previously identified by Western blot analysis, were obtained in the five lambda gt11 expression libraries. Recombinant antigen expression was dependent on lambda gt11 lac promoter induction in 39% of the recombinants assayed. This method significantly improves the efficiency of genomic lambda gt11 library construction by eliminating blunt-ended ligation and simplifying the removal of unligated EcoRI-ended oligonucleotides.  相似文献   

4.
Monoclonal antibodies to herpes simplex virus type 2 were found to precipitate different numbers of radiolabeled polypeptides from lysates of virus-infected cells. Antibodies directed against two viral glycoproteins were characterized. Antibodies from hybridoma 17 alpha A2 precipitated a 60,000-molecular-weight polypeptide which chased into a 66,000- and 79,000-molecular-weight polypeptide. All three polypeptides labeled in the presence of [3H]glucosamine and had similar tryptic digest maps. The 60,000-molecular-weight polypeptide also chased into a 31,000-molecular-weight species which did not label with [3H]glucosamine. Antibodies from hybridoma 17 beta C2 precipitated a 50,000-molecular-weight polypeptide which chased into a 56,000- and 80,000-molecular weight polypeptide. These polypeptides also shared a similar tryptic digest map and labeled with [3H]glucosamine. Both monoclonal antibodies were herpes simplex virus type 2 specific. The viral proteins precipitated by 17 alpha A2 antibodies had characteristics similar to those reported for glycoprotein E, whereas the proteins precipitated by 17 beta C2 antibodies appeared to represent a glycoprotein not previously described. This glycoprotein should be tentatively designated glycoprotein F.  相似文献   

5.
6.
7.
Multimeric forms of herpes simplex virus type 2 glycoproteins.   总被引:9,自引:8,他引:1       下载免费PDF全文
Molecular clones of closed circular DNA molecules of a mink cell focus-inducing murine leukemia virus (MCF-13 MuLV) were generated. Closed circular DNA molecules isolated from a Hirt extraction of recently infected NIH/3T3 cells were inserted at their unique EcoRI site into lambda gtWES.lambda B. Restriction endonuclease analysis of inserts of two clones indicated that they represented intact MCF-13 MuLV genomes. One viral insert contained two large terminal repeat sequences, and the other contained only one. A 300-base-pair DNA fragment located in the envelope region of the MCF-13 MuLV genome was determined to be related to xenotropic MuLV sequences.  相似文献   

8.
H Kondoh  B R Paul    M M Howe 《Journal of virology》1980,35(3):619-628
A general method for constructing lambda specialized transducing phages is described. The method, which is potentially applicable to any gene of Escherichia coli, is based on using Mu DNA homology to direct the integration of a lambda pMu phage near the genes whose transduction is desired. With this method we isolated a lambda transducing phage carrying all 10 genes in the che gene cluster (map location, 41.5 to 42.5 min). The products of the cheA and tar genes were identified by using transducing phages with amber mutations in these genes. It was established that tar codes for methyl-accepting chemotaxis protein II (molecular weight, 62,000) and that cheA codes for two polypeptides (molecular weights, 76,000 and 66,000). Possible origins of the two cheA polypeptides are discussed.  相似文献   

9.
By using amino acid sequence patterns (motifs) diagnostic of conserved regions within the catalytic domains of protein kinases, homologous open reading frames of three herpesviruses were identified as protein kinase-related genes. The three sequences, herpes simplex virus gene UL13, varicella-zoster virus gene 47, and Epstein-Barr virus gene BGLF4, resemble serine/threonine kinases rather than tyrosine kinases.  相似文献   

10.
The antibiotic tunicamycin, which blocks the synthesis of glycoproteins, inhibited the production of infectious herpes simplex virus. In the presence of this drug, [14C]glucosamine and [3H]mannose incorporation was reduced in infected cells, whereas total protein synthesis was not affected. Gel electrophoresis of [2-3H]mannose-labeled polypeptides failed to detect glycoprotein D or any of the other herpes simplex virus glycoproteins. By use of specific antisera we demonstrated that in the presence of tunicamycin the normal precursors to viral glycoproteins failed to appear. Instead, lower-molecular-weight polypeptides were found which were antigenically and structurally related to the glycosylated proteins. Evidence is presented to show that blocking the addition of carbohydrate to glycoprotein precursors with tunicamycin results in the disappearance of molecules, possibly due to degradation of the unglycosylated polypeptides. We infer that the added carbohydrate either stabilizes the envelope proteins or provides the proper structure for correct processing of the molecules needed for infectivity.  相似文献   

11.
A number of herpes simplex virus (HSV) glycoproteins are found in oligomeric states: glycoprotein E (gE)-gI and gH-gL form heterodimers, and both gB and gC have been detected as homodimers. We have further explored the organization of glycoproteins in the virion envelope by using both purified virions to quantitate glycoprotein amounts and proportions and chemical cross-linkers to detect oligomers. We purified gB, gC, gD, and gH from cells infected with HSV type 1 and used these as immunological standards. Glycoproteins present in sucrose gradient-purified preparations of two strains of HSV type 1, KOS and NS, were detected with antibodies to each of the purified proteins. From these data, glycoprotein molar ratios of 1:2:11:16 and 1:1:14:9 were calculated for gB/gC/gD/gH in KOS and NS, respectively. gL was also detected in virions, although we lacked a purified gL standard for quantitation. We then asked whether complexes of these glycoproteins could be identified, and if they existed as homo- or hetero-oligomers. Purified KOS was incubated at 4 degrees C with bis (sulfosuccinimidyl) suberate (BS3), an 11.4 A (1A = 0.1 mm) noncleavable, water-soluble cross-linker. Virus extracts were examined by Western blotting (immunoblotting), or immunoprecipitation followed by Western blotting, to assay for homo- and hetero-oligomers. Homodimers of gB, gC, and gD were detected, and hetero-oligomers containing gB cross-linked to gC, gC to gD, and gD to gB were also identified. gH and gL were detected as a hetero-oligomeric pair and could be cross-linked to gD or gC but not to gB. We conclude that these glycoproteins are capable of forming associations with one another. These studies suggest that glycoproteins are closely associated in virions and have the potential to function as oligomeric complexes.  相似文献   

12.
In BHK cells infected with pseudorabies virus, there was a substantial increase in the phosphorylation of ribosomal protein S6. This increase occurred between 2 and 4 h after infection and persisted at least until 9 h. We estimated that in mock-infected cells S6 contained, on an average, one phosphate group per protein chain, whereas in infected cells this rose to between four and five phosphate groups per protein chain. A second ribosomal protein, either S16 or S18, was also phosphorylated after infection. No increase in cyclic AMP was found at the time of phosphorylation. We also found an increased phosphorylation of S6 in herpes simplex virus-infected BHK cells.  相似文献   

13.
Members of the herpesvirus family mature at inner nuclear membranes, although a fraction of the viral glycoproteins is expressed on the cell surface. In this study, we investigated the localization of herpes simplex virus type 2 (HSV-2) glycoproteins in virus-infected epithelial cells by using a panel of monoclonal antibodies directed against each of the major viral glycoproteins. All of the HSV-2 glycoproteins were localized exclusively on the basolateral membranes of Vero C1008, Madin-Darby bovine kidney, and mouse mammary epithelial cells. Using a monoclonal antibody to HSV-2 gD which cross-reacts with HSV-1 strains, we could also localize HSV-1 gD on the basolateral membranes of Madin-Darby bovine kidney cells. These results indicate that these molecules contain putative sorting signals that direct them to basolateral membrane domains.  相似文献   

14.
An open reading frame with the characteristics of a glycoprotein-coding sequence was identified by nucleotide sequencing of human cytomegalovirus (HCMV) genomic DNA. The predicted amino acid sequence was homologous with glycoprotein H of herpes simplex virus type 1 and the homologous protein of Epstein-Barr virus (BXLF2 gene product) and varicella-zoster virus (gpIII). Recombinant vaccinia viruses that expressed this gene were constructed. A glycoprotein of approximately 86 kilodaltons was immunoprecipitated from cells infected with the recombinant viruses and from HCMV-infected cells with a monoclonal antibody that efficiently neutralized HCMV infectivity. In HCMV-infected MRC5 cells, this glycoprotein was present on nuclear and cytoplasmic membranes, but in recombinant vaccinia virus-infected cells it accumulated predominantly on the nuclear membrane.  相似文献   

15.
To investigate the interaction of herpes simplex virus type 1 (HSV-1) with the cell surface, we studied the formation of complexes by HSV-1 virion proteins with biotinylated cell membrane components. HSV-1 virion proteins reactive with surface components of HEp-2 and other cells were identified as gC, gB, and gD. Results from competition experiments suggested that binding of gC, gB, and gD occurred in a noncooperative way. The observed complex formation could be specifically blocked by monospecific rabbit antisera against gB and gD. The interaction of gD with the cell surface was also inhibited by monoclonal antibody IV3.4., whereas other gD-specific monoclonal antibodies, despite their high neutralizing activity, were not able to inhibit this interaction. Taken together, these data provide direct evidence that at least three of the seven known HSV-1 glycoproteins are able to form complexes with cellular surface structures.  相似文献   

16.
The Sindbis virus envelope contains two species of integral membrane glycoproteins, E1 and E2. These proteins form heterodimers, and three dimeric units assemble to form spikes incorporated into the viral surface which play an important role in the specific attachment of Sindbis virus to host cells. To map the neutralization epitopes on the surface of the virus, we constructed a lambda gt11 expression library with cDNA inserts 100 to 300 nucleotides long obtained from randomly primed synthesis on Sindbis virus genomic RNA. This library was screened with five different neutralizing monoclonal antibodies (MAbs) specific for E2 (MAbs 50, 51, 49, 18, and 23) and with one neutralizing MAb specific for E1 (MAb 33). When 10(6) lambda gt11 plaques were screened with each antibody, four positive clones that reacted with E2-specific MAb 23 were found. These four clones contained overlapping inserts from glycoprotein E2; the domain from residues 173 to 220 of glycoprotein E2 was present in all inserts, and we concluded that this region contains the neutralization epitope recognized by the antibody. No clones that reacted with the other antibodies examined were found, and we concluded that these antibodies probably recognize conformational epitopes not present in the lambda gt11 library. We suggest that the E2 domain from residues 173 to 220 is a major antigenic determinant of Sindbis virus and that this domain is important for virus attachment to cells.  相似文献   

17.
Cross-reactive monoclonal antibodies recognizing both herpes simplex virus (HSV) glycoprotein B and a major 63,000-dalton varicella-zoster virus (VZV) envelope glycoprotein were isolated and found to neutralize VZV infection in vitro. None of the other VZV glycoproteins was recognized by any polyclonal anti-HSV serum tested. These results demonstrate that HSV glycoprotein B and the 63,000-dalton VZV glycoprotein share antigenic epitopes and raise the possibility that these two proteins have a similar function in infection.  相似文献   

18.
N de Wind  F Wagenaar  J Pol  T Kimman    A Berns 《Journal of virology》1992,66(12):7096-7103
We mutagenized, mapped, and sequenced the pseudorabies virus (PRV) homology of gene UL21 of herpes simplex virus type 1. A polyclonal mouse antiserum against the protein encoded by the UL21 homolog was generated and used to monitor the expression and subcellular localization of the UL21-encoded protein. We found that the protein is identical to a previously detected PRV capsid protein. We analyzed viable PRV strains encoding mutant UL21 homologys, truncated by insertion of an oligonucleotide that contains stop codons in all reading frames. In two PRV mutants carrying the oligonucleotide at two sites within the gene, processing of newly replicated viral DNA was impaired. In addition, we show that one of the UL21 mutants has strongly reduced virulence for mice.  相似文献   

19.
We have looked for conserved DNA sequences between four herpes simplex virus type 1 (HSV-1) glycoprotein genes encoding gB, gC, gD, and gE and pseudorabies virus (PRV) DNA, HSV-1 DNA fragments representing these four glycoprotein-coding sequences were hybridized to restriction enzyme fragments of PRV DNA by the Southern blot procedure. Specific hybridization was observed only when HSV-1 gB DNA was used as probe. This region of hybridization was localized to a 5.2-kilobase (kb) region mapping at approximately 0.15 map units on the PRV genome. Northern blot (RNA blot) analysis, with a 1.2-kb probe derived from this segment, revealed a predominant hybridizing RNA species of approximately 3 kb in PRV-infected PK15 cells. DNA sequence analysis of the region corresponding to this RNA revealed a single large open reading frame with significant nucleotide homology with the gB gene of HSV-1 KOS 321. In addition, the beginning of the sequenced PRV region also contained the end of an open reading frame with amino acid homology to HSV-1 ICP 18.5, a protein that may be involved in viral glycoprotein transport. This sequence partially overlaps the PRV gB homolog coding sequence. We have shown that the PRV gene with homology to HSV-1 gB encoded the gII glycoprotein gene by expressing a 765-base-pair segment of the PRV open reading frame in Escherichia coli as a protein fused to beta-galactosidase. Antiserum, raised in rabbits, against this fusion protein immunoprecipitated a specific family of PRV glycoproteins of apparent molecular mass 110, 68, and 55 kilodaltons that have been identified as the gII family of glycoproteins. Analysis of the predicted amino acid sequence indicated that the PRV gII protein shares 50% amino acid homology with the aligned HSV-1 gB protein. All 10 cysteine residues located outside of the signal sequence, as well as 4 of 6 potential N-linked glycosylation sites, were conserved between the two proteins. The primary protein sequence for HSV-1 gB regions known to be involved in the rate of virus entry into the cells and cell-cell fusion, as well as regions known to be associated with monoclonal antibody resistance, were highly homologous with the PRV protein sequence. Furthermore, monospecific antibody made against PRV gII immunoprecipitated HSV-1 gB from infected cells. Taken together, these findings suggest significant conservation of structure and function between the two proteins and may indicate a common evolutionary history.  相似文献   

20.
Utilizing a combination of preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sodium dodecyl sulfate-hydroxylapatite column chromatography, we have separated and purified the gA and gB glycoproteins of the major virus-specific glycoprotein region from herpes simplex virus type 1-infected cells. By using purified antigen preparations, antisera specific to each of these glycoproteins were produced. Immunoprecipitation from detergent extracts of infected cells and radioimmune precipitation of the purified antigens have shown that the anti-gA and anti-gB sera each recognize both the gA and the gB glycoproteins. The anti-gA serum was also shown to neutralize virus despite the presence of only minute quantities of the gA glycoprotein in virions. Pulse-chase studies have indicated that the gA and gB glycoproteins are synthesized from a common precursor polypeptide. Together, these data demonstrate that the gA and gB glycoproteins of herpes simplex virus type 1 are antigenically similar but not identical and probably represent two different forms of the same polypeptide which differ in their degree of glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号