首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factors (FGFs) mediate essential cellular functions by activating one of four alternatively spliced FGF receptors (FGFRs). To determine the mechanism regulating ligand binding affinity and specificity, soluble FGFR1 and FGFR3 binding domains were compared for activity. FGFR1 bound well to FGF2 but poorly to FGF8 and FGF9. In contrast, FGFR3 bound well to FGF8 and FGF9 but poorly to FGF2. The differential ligand binding specificity of these two receptors was exploited to map specific ligand binding regions in mutant and chimeric receptor molecules. Deletion of immunoglobulin-like (Ig) domain I did not effect ligand binding, thus localizing the binding region(s) to the distal two Ig domains. Mapping studies identified two regions that contribute to FGF binding. Additionally, FGF2 binding showed positive cooperativity, suggesting the presence of two binding sites on a single FGFR or two interacting sites on an FGFR dimer. Analysis of FGF8 and FGF9 binding to chimeric receptors showed that a broad region spanning Ig domain II and sequences further N-terminal determines binding specificity for these ligands. These data demonstrate that multiple regions of the FGFR regulate ligand binding specificity and that these regions are distinct with respect to different members of the FGF family.  相似文献   

2.
32D cells transfected with the human alpha platelet-derived growth factor receptor (alpha PDGFR) bind PDGF-AA, -AB, and -BB isoforms with high affinity, and the binding of each can be efficiently competed by all three isoforms. In an effort to develop better understanding of spatial relationships of binding sites for PDGF-AA and -BB, we constructed an alpha PDGFR mutant which deleted amino acids 150-189 within its extracellular domain. This mutant showed a marked decrease in high affinity binding sites for PDGF-AA without comparable alteration in affinity for PDGF-BB. These findings imply that the high affinity binding sites for PDGF-AA and PDGF-BB in the alpha PDGFR extracellular domain are not structurally coincident.  相似文献   

3.
Platelet-derived growth factor (PDGF) is a disulfide-linked dimeric protein composed of two homologous polypeptide chains denoted A and B. Two types of PDGF receptors, alpha and beta, have been characterized. Whereas PDGF-AA binds only to PDGF alpha-receptors, PDGF-BB binds to both receptor types with high affinity. To map the regions of the PDGF B-chain that confer its ability to bind with high affinity to the PDGF beta-receptor, we expressed PDGF A/B-chain chimeras in COS cells and analyzed them with regard to PDGF alpha- and beta-receptor binding. A systematic analysis revealed that replacement of Asn-115, Arg-154, and Ile-158 of the PDGF B-chain with the corresponding A-chain amino acids led to a dramatic decrease in the affinity for the beta-receptor. Conversely, introduction of B-chain amino acids into the A-chain in the region spanning from Asn-115 to Ile-158 yielded a product with high affinity for the beta-receptor. These data thus indicate that Asn-115, Arg-154, and Ile-158 are likely to be part of the active site of the PDGF B-chain.  相似文献   

4.
The cell surface receptors for insulin and epidermal growth factor (EGF) both employ a tyrosine-specific protein kinase activity to fulfil their distinct biological roles. To identify the structural domains responsible for various receptor activities, we have generated chimeric receptor polypeptides consisting of major EGF and insulin receptor structural domains and examined their biochemical properties and cellular signalling activities. The EGF-insulin receptor hybrids are properly synthesized and transported to the cell surface, where they form binding competent structures that are defined by the origin of their extracellular domains. While their ligand binding affinities are altered, we find that these chimeric receptors are fully functional in transmitting signals across the plasma membrane and into the cell. Thus, EGF receptor and insulin receptor cytoplasmic domain signalling capabilities are independent of their new heterotetrameric or monomeric environments respectively. Furthermore, the cytoplasmic domains carry the structural determinants that define kinase specificity, mitogenic and transforming potential, and receptor routing.  相似文献   

5.
The aminoglycoside neomycin has recently been found to affect certain platelet-derived growth factor (PDGF) responses in C3H/10T1/2 C18 fibroblasts. Using porcine aortic endothelial cells transfected with PDGF alpha- or beta-receptors, we explored the possibility that neomycin interferes with the interaction between the different PDGF isoforms and their receptors. We found that neomycin (5 mM) inhibited the binding of 125I-PDGF-BB to the alpha-receptor with only partial effect on the binding of 125I-PDGF-AA; in contrast, the binding of 125I-PDGF-BB to the beta-receptor was not affected by the aminoglycoside. Scatchard analyses showed that neomycin (5 mM) decreased the number of binding sites for PDGF-BB on alpha-receptor-expressing cells by 87%. Together with cross-competition studies with 125I-labeled PDGF homodimers, the effect of neomycin indicates that PDGF-AA and PDGF-BB bind to both common and unique structures on the PDGF alpha-receptor. Neomycin specifically inhibited the autophosphorylation of the alpha-receptor by PDGF-BB, with less effect on the phosphorylation induced by PDGF-AA and no effect on the phosphorylation of the beta-receptor by PDGF-BB. Thus, neomycin is a PDGF isoform- and receptor-specific antagonist that provides a possibility to compare the signal transduction pathways of alpha- and beta-receptors in cells expressing both receptor types. This approach was used to show that activation of PDGF beta-receptors by PDGF-BB mediated a chemotactic response in human fibroblasts, whereas activation of alpha-receptors by the same ligand inhibited chemotaxis.  相似文献   

6.
P Kanakaraj  S Raj  S A Khan  S Bishayee 《Biochemistry》1991,30(7):1761-1767
Two types of PDGF receptors have been cloned and sequenced. Both receptors are transmembrane glycoproteins with a ligand-stimulatable tyrosine kinase site. We have shown earlier that ligand-induced activation of the beta-type PDGF receptor is due to the conversion of the monomeric form of the receptor to the dimeric form [Bishayee et al. (1989) J. Biol. Chem. 264, 11699-11705]. In the present studies, we have established the ligand-binding specificity of two receptor types and extended it further to investigate the ligand-induced association state of the alpha-receptor and the role of alpha-receptor in the activation of beta-receptor. These studies were conducted with cells that express one or the other type of PDGF receptor as well as with cells that express both types of receptors. Moreover, ligand-binding characteristics of the receptor were confirmed by immunoprecipitation of the receptor-125I-PDGF covalent complex with type-specific anti-PDGF receptor antibodies. These studies revealed that all three isoforms of PDGF bind to alpha-receptor, and such binding leads to dimerization as well as activation of the receptor. In contrast, beta-receptor can be activated only by PDGF BB and not by PDGF AB or PDGF AA. However, by using antipeptide antibodies that are specific for alpha- or beta-type PDGF receptor, we demonstrated that in the presence of alpha-receptor, beta-receptor kinase can be activated by PDGF AB. We present here direct evidence that strongly suggests that such PDGF AB induced activation of beta-receptor is due to the formation of a noncovalently linked alpha-beta receptor heterodimer.  相似文献   

7.
High affinity binding of platelet-derived growth factor (PDGF) has been proposed to involve the interaction of the dimeric PDGF ligand with two receptor subunits, designated alpha and beta. We have cloned and expressed a human PDGF receptor cDNA which differs in sequence from the beta-subunit and which has the PDGF binding properties and monoclonal antibody recognition, predicted for the alpha-subunit. Scatchard analysis indicated that PDGF-AA and PDGF-AB bound to transfected alpha-subunits with affinities of Kd = 0.06 and 0.05 nM, respectively. PDGF-BB bound with a significantly lower affinity (Kd = 0.4 nM). Nevertheless, this affinity is still great enough to mediate substantial PDGF-BB binding at physiological concentrations and would be considered to be "high affinity." We have used wild-type and kinase-inactive human beta-subunits to show that PDGF binding promotes receptor subunit dimerization in intact cells. In addition, we found that PDGF stimulates tyrosine phosphorylation of the kinase-inactive beta-subunit when it is expressed with alpha-subunits. The kinase-inactive beta-subunits were phosphorylated at tyrosine 857 and 751, the major phosphorylation sites of the wild-type beta-subunit, indicating either that intra- and intermolecular phosphorylation occurs on the same sites, or that a significant fraction of receptor tyrosine phosphorylation is intermolecular.  相似文献   

8.
This study provided a pharmacological evaluation of prostaglandin binding to bovine luteal plasma membrane. It was found that [3H]PGF2 alpha' [3H]PGE2' [3H]PGE1 and [3H]PGD2 all bound with high affinity to luteal plasma membrane but had different specificities. Binding of [3H]PGF2 alpha and [3H]PGD2 was inhibited by non-radioactive PGF2 alpha (IC50 values of 21 and 9 nmol l-1, respectively), PGD2 (35 and 21 nmol l-1), and PGE2 (223 and 81 nmol l-1), but not by PGE1 (> 10,000 and 5616 nmol l-1). In contrast, [3H]PGE1 was inhibited by non-radioactive PGE1 (14 nmol l-1) and PGE2 (7 nmol l-1), but minimally by PGD2 (2316 nmol l-1) and PGF2 alpha (595 nmol l-1). Binding of [3H]PGE2 was inhibited by all four prostaglandins, but slopes of the dissociation curves indicated two binding sites. Binding of [3H]PGE1 was inhibited, resulting in low IC50 values, by pharmacological agonists that are specific for EP3 receptor and possibly EP2 receptor. High affinity binding of [3H]PGF2 alpha required a C15 hydroxyl group and a C1 carboxylic acid that are present on all physiological prostaglandins. Specificity of binding for the FP receptor depended on the C9 hydroxyl group and the C5/C6 double bond. Alteration of the C11 position had little effect on affinity for the FP receptor. In conclusion, there is a luteal EP receptor with high affinity for PGE1' PGE2' agonists of EP3 receptors, and some agonists of EP2 receptors. The luteal FP receptor binds PGF2 alpha' PGD2 (high affinity), and PGE2 (moderate affinity) but not PGE1 due to affinity determination by the C9 and C5/C6 moieties, but not the C11 moiety.  相似文献   

9.
The extracellular region of the nerve growth factor (NGF) receptor, TrkA, contains two immunoglobulin (Ig)-like domains that are required for specific ligand binding. We have investigated the possible role of these two Ig-like domains in receptor dimerization and activation by using different mutants of the TrkA extracellular region. Deletions of each Ig-like domain, of both, and of the entire extracellular region were made. To probe the structural constraints on ligand-independent receptor dimerization, chimeric receptors were generated by swapping the Ig-like domains of the TrkA receptor for the third or fourth Ig-like domain of c-Kit. We also introduced single-amino-acid changes in conserved residues within the Ig-like domains of TrkA. Most of these TrkA variants did not bind NGF, and their expression in PC12nnr5 cells, which lack endogenous TrkA, promoted ligand-independent neurite outgrowth. Some TrkA mutant receptors induced malignant transformation of Rat-1 cells, as assessed by measuring proliferation in the absence of serum, anchorage-independent growth, and tumorigenesis in nude mice. These mutants exhibited constitutive phosphorylation and spontaneous dimerization consistent with their biological activities. Our data suggest that spontaneous dimerization of TrkA occurs when the structure of the Ig-like domains is altered, implying that the intact domains inhibit receptor dimerization in the absence of NGF.  相似文献   

10.
We have characterized platelet-derived growth factor (PDGF) C, a novel growth factor belonging to the PDGF family. PDGF-C is a multidomain protein with the N-terminal region homologous to the extracellular CUB domain of neuropilin-1, and the C-terminal region consists of a growth factor domain (GFD) with homology to vascular endothelial growth factor (25%) and PDGF A-chain (23%). A serum-sensitive cleavage site between the two domains allows release of the GFD from the CUB domain. Competition binding and immunoprecipitation studies on cells bearing both PDGF alpha and beta receptors reveal a high affinity binding of recombinant GFD (PDGF-CC) to PDGF receptor-alpha homodimers and PDGF receptor-alpha/beta heterodimers. PDGF-CC exhibits greater mitogenic potency than PDGF-AA and comparable or greater mitogenic activity than PDGF-AB and PDGF-BB on several mesenchymal cell types. Analysis of PDGF-CC in vivo in a diabetic mouse model of delayed wound healing showed that PDGF-CC significantly enhanced repair of a full-thickness skin excision. Together, these studies describe a third member of the PDGF family (PDGF-C) as a potent mitogen for cells of mesenchymal origin in in vitro and in vivo systems with a binding pattern similar to PDGF-AB.  相似文献   

11.
To delineate the structural determinants of the insulin receptor (IR) and insulin-like growth factor I receptor (IGFIR) which affect hormone binding specificity we have constructed seven chimeric receptor cDNAs and stably expressed them in Chinese hamster ovary cells. Clonal cell lines expressing high levels of each receptor chimera were analyzed for insulin and insulin-like growth factor I (IGFI) binding activity. Measurements of hormone binding and immunoprecipitation of metabolically labeled receptors showed that all chimeras were properly processed and expressed at the cell surface. The binding data indicate that 56 amino acids of the IR and 52 amino acids of the IGFIR located in corresponding regions of the cysteine-rich domains are the primary determinants of hormone binding specificity. These regions are located between amino acids Asn-230 and Ile-285 on the IR and between His-223 and Met-274 on the IGFIR. In addition, the alpha IR-3 antibody, which competes for IGFI binding, was found to interact with the same 52 amino acids of the IGFIR which determines hormone specificity. Other antibodies which interfere with insulin binding (5D9, MC51, and MA20) interact with epitopes in the COOH-terminal 288 amino acids of the alpha-subunit. We conclude that 56 and 52 amino acids of the cysteine-rich domains of the IR and IGFIR contain the major determinants of hormone binding specificity although other more COOH-terminal regions of both receptors contribute to hormone binding.  相似文献   

12.
To identify structural characteristics of the closely related cell surface receptors for insulin and IGF-I that define their distinct physiological roles, we determined the complete primary structure of the human IGF-I receptor from cloned cDNA. The deduced sequence predicts a 1367 amino acid receptor precursor, including a 30-residue signal peptide, which is removed during translocation of the nascent polypeptide chain. The 1337 residue, unmodified proreceptor polypeptide has a predicted Mr of 151,869, which compares with the 180,000 Mr IGF-I receptor precursor. In analogy with the 152,784 Mr insulin receptor precursor, cleavage of the Arg-Lys-Arg-Arg sequence at position 707 of the IGF-I receptor precursor will generate alpha (80,423 Mr) and beta (70,866 Mr) subunits, which compare with approximately 135,000 Mr (alpha) and 90,000 Mr (beta) fully glycosylated subunits.  相似文献   

13.
It is well established that epidermal growth factor and platelet-derived growth factor (PDGF) are able to induce noncovalent dimerization of their surface receptors. It is thought that receptor dimerization plays an important role in activation of the tyrosine kinase function and in the process of receptor autophosphorylation. Here we show that the addition of either PDGF-BB or PDGF-AA to intact 3T3 cells induces formation of 400- and 430-kDa species, respectively, recognized by either anti-PDGF receptor antibodies or anti-phosphotyrosine antibodies. Interestingly, the 400- and the 430-kDa species are detected in nonreducing gels but not in reducing gels. Moreover, an alkylating agent, N-ethylmaleimide, inhibits PDGF-induced formation of high-molecular-mass species. Comparisons of V8 protease peptide maps of [35S]methionine-labeled PDGF receptors and high-molecular-mass proteins indicate that they represent dimers of PDGF receptors. It appears therefore that in addition to noncovalent dimerization, PDGF receptors undergo ligand-dependent disulfide-linked dimerization.  相似文献   

14.
We investigated the interaction of phospholipase C-gamma (PLC-gamma) with wild-type and mutant forms of the platelet-derived growth factor (PDGF) beta-receptor both in vivo and in vitro. After PDGF treatment of CHO cell lines expressing wild-type or either of two mutant (delta Ki and Y825F) PDGF receptors, PLC-gamma became tyrosine phosphorylated and associated with the receptor proteins. The receptor association and tyrosine phosphorylation of PLC-gamma correlated with the ability of these receptors to mediate ligand-induced phosphatidylinositol turnover. However, both the delta Ki and Y825F mutant receptors were deficient in transmitting mitogenic signals, suggesting that the PDGF-induced tyrosine phosphorylation and receptor association of PLC-gamma are not sufficient to account for the growth-stimulatory activity of PDGF. Wild-type and delta Ki mutant PDGF receptor proteins expressed with recombinant baculovirus vectors also associated in vitro with mammalian PLC-gamma. However, baculovirus-expressed c-fms, v-fms, c-src, and Raf-1 proteins failed to associate with PLC-gamma under similar conditions. Phosphatase treatment of the baculovirus-expressed PDGF receptor greatly decreased its association with PLC-gamma. This requirement for receptor phosphorylation was also observed in vivo, where PLC-gamma could not associate with a mutant PDGF receptor (K602A) defective in autophosphorylation. PLC-gamma also coimmunoprecipitated with two other putative receptor substrates, the serine-threonine kinase Raf-1 and the 85-kilodalton phosphatidylinositol-3' kinase, presumably through its association with the ligand-activated receptor. Furthermore, baculovirus-expressed Raf-1 phosphorylated purified PLC-gamma in vitro at sites which showed increased serine phosphorylation in vivo in response to PDGF. These results suggest that PDGF directly influences PLC activity by inducing the association of PLC-gamma with a receptor signaling complex, resulting in increased tyrosine and serine phosphorylation of PLC-gamma.  相似文献   

15.
The fibroblast growth factor receptor 2 (FGFR2) gene is expressed as alternatively spliced mRNAs that encode bacterially expressed kinase, the keratinocyte growth factor receptor, or K-sam. We have now isolated a novel FGFR2 cDNA that is identical with the previously cloned human bacterially expressed kinase, except in the third immunoglobulin-like domain. The ligand binding properties of FGFR2 were studied by expressing the protein in rat L6 muscle myoblasts. Unlike human bacterially expressed kinase which binds acidic and basic FGF with similar affinities, FGFR2 bound acidic FGF with approximately 1000-fold higher affinity than basic FGF. These results indicate that alternative splicing of the FGFR2 gene in the region encoding the carboxyl-terminal half of the third immunoglobulin domain determines the ligand specificity of this group of receptors.  相似文献   

16.
Since the extracellular matrix (ECM) can promote platelet-derived growth factor (PDGF)-dependent responses, we hypothesized that the ECM mediates this effect by preventing the PDGF beta receptor (betaPDGFR) from associating with the negative regulator, RasGAP (the GTPase-activating protein of Ras). We found that binding of RasGAP to the wild-type betaPDGFR was decreased; the activation of Ras and Erk was enhanced, and [3H]thymidine uptake was better in cells cultured on fibronectin than in cells cultured on polylysine. To investigate the mechanism by which culturing cells on fibronectin diminished the recruitment of RasGAP to the betaPDGFR, we focused on SHP-2 since it dephosphorylates the betaPDGFR at the phosphotyrosine required for binding of RasGAP. Culturing cells on fibronectin increased the amount of SHP-2 that associated with the betaPDGFR. Furthermore, cells expressing receptor mutants that failed to associate with SHP-2 were insensitive to fibronectin. The ECM enhances PDGF-dependent responses by increasing the association of SHP-2 with the betaPDGFR, which in turn decreases the time that RasGAP interacts with the receptor. Thus, fibronectin changes PDGF-dependent signaling and biological responses by altering the signal relay enzymes that are recruited to the receptor.  相似文献   

17.
Neurofibromatosis type 1 (NF1) is characterized by the formation of neurofibromas, benign tumors of the peripheral nerve consisting essentially of Schwann cells, which can sometimes turn malignant to form neurofibrosarcomas. The mechanism of progression toward a malignant phenotype remains largely unknown. In this report, we show that platelet-derived growth factor (PDGF) BB, and to a lesser extent fibroblast growth factor 2, are mitogenic for two neurofibrosarcoma-derived Schwann cell lines, but not for a Schwann cell line derived from a schwannoma (from a non-NF1 patient) or for transformed rat Schwann cells. Levels of expression of both PDGF receptor α and β are significantly increased in the two neurofibrosarcoma-derived cell lines compared to the non-NF1 Schwann cell lines. The level of tyrosyl-phosphorylated PDGF receptor β is strongly increased upon stimulation by PDGF BB. In comparison, only modest levels of tyrosyl-phosphorylated PDGF receptor α are observed, upon stimulation by PDGF AA or PDGF BB. Accordingly, PDGF AA is only a weak mitogen for the neurofibrosarcoma-derived cells by comparison to PDGF BB. These results indicate that the mitogenic effect of PDGF BB for the neurofibrosarcoma-derived Schwann cell lines is primarily transduced by PDGF receptor β. Neu differentiation factor β, a potent mitogen for normal Schwann cells, was unable to stimulate proliferation of the transformed Schwann cell lines, due to a dramatic down-regulation of the erbB3 receptor. Therefore, aberrant expression of growth factor receptors by Schwann cells, such as the PDGF receptors, could represent an important step in the process leading to Schwann cell hyperplasia in NF1. J. Cell. Physiol. 177:334–342, 1998. © 1998 Wiley-Liss, Inc. The information in the article does not reflect government policy and no official endorsement should be inferred.  相似文献   

18.
Certain platelet-derived growth factor (PDGF) isoforms are associated with proliferative vitreoretinopathy (PVR), a sight-threatening complication that develops in a subset of patients recovering from retinal reattachment surgery. Although these PDGF isoforms are abundant in the vitreous of patients and experimental animals with PVR, they make only a minor contribution to activating PDGF receptor α (PDGFRα) and driving experimental PVR. Rather, growth factors outside of the PDGF family are the primary (and indirect) agonists of PDGFRα. These observations beg the question of why vitreal PDGFs fail to activate PDGFRα. We report here that vitreous contains an inhibitor of PDGF-dependent activation of PDGFRα and that a major portion of this inhibitory activity is due to vascular endothelial cell growth factor A (VEGF-A). Furthermore, recombinant VEGF-A competitively blocks PDGF-dependent binding and activation of PDGFR, signaling events, and cellular responses. These findings unveil a previously unappreciated relationship between distant members of the PDGF/VEGF family that may contribute to pathogenesis of a blinding eye disease.  相似文献   

19.
Platelet-derived growth factor (PDGF) and its receptor exist in multiple forms. PDGF exists in three dimeric combinations of A and B subunit chains, which are the products of separate genes. The PDGF receptor is similarly encoded by genes for two distinct receptor proteins, alpha and beta. A recent model proposed PDGF binding involves the association of the two receptor proteins into three possible dimeric forms. An essential prediction of that model is that PDGF alpha-receptors are required for cells to bind and respond to the heterodimeric AB isoform of PDGF. In contrast, we found both binding and functional response to PDGF-AB was retained in Balb/c-3T3 cells after PDGF alpha-receptors had been down-regulated by PDGF-AA pretreatment. The observation that PDGF-AB could still elicit these responses suggests that at 37 degrees C, PDGF-AB may bind directly to beta-receptors in either monomeric or dimeric forms and that initial receptor activation may occur independently of the formation of alpha beta-receptor heterodimers.  相似文献   

20.
The conditioned medium from Sertoli cells contains a potent mitogen(s) that can markedly stimulate the proliferation of 4 different cell lines of endoderm or mesoderm origin in the presence or absence of serum. With A431 cells, conditioned medium produced in a dose-dependent manner up to a 5.2-fold increase in cell number after 5 days in culture. Addition of follicle-stimulating hormone (FSH), testosterone, retinol, and insulin to the Sertoli cells increased the secretion of the mitogenic activity. The ability of Sertoli cell conditioned medium (SCCM) to displace 125I-labeled epidermal growth factor (125I-EGF) from formalin-fixed A431 cells was also examined. The SCCM from Sertoli cells incubated with insulin contained 1.42 ng eq of EGF/ml; testosterone, retinol, and FSH (in the presence of insulin) further increased the secretion of this EGF competing activity to 2.09, 2.56, and 3.22 ng eq/ml, respectively. The amount of EGF competing activity was positively correlated with mitogenic activity. Separation of SCCM by gel filtration on Bio-Gel P-10 produced three major peaks of EGF-competing activity at apparent Mr = 1800-2100, 3800-4200, and 8000-9500. Chromatographing SCCM (in the presence of protease inhibitors) on size exclusion high performance liquid chromatography revealed two peaks of EGF competing activity at Mr about 8000 and 2000 coincident with and proportional to peaks of mitogenic activity. This activity was heat-sensitive and resistant to reducing agents, and addition of an equivalent amount of EGF as that present in SCCM produced an inhibition in growth of the A431 cells compared to a 3-fold stimulation with SCCM. Thus, the Sertoli cells secrete a potent mitogen that is distinct from EGF and alpha TGF. This factor that we have termed Sertoli cell-secreted growth factor is hormonally regulated by FSH, testosterone, and retinol and may play an important role in controlling spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号