首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
This study focused on the growth of Saccha-romyces cerevisiae MM01 recombinant strains and the respective production of three extracellular heterologous cutinases: a wild-type cutinase and two cutinases in which the primary structure was fused with the peptides (WP)(2) and (WP)(4), respectively. Different cultivation and strategies were tested in a 2-L shake flask and a 5-L bioreactor, and the respective cell growth and cutinase production were analyzed and compared for the three yeast strains. The highest cutinase productions and productivities were obtained in the fed-batch culture, where wild-type cutinase was secreted up to a level of cutinase activity per dry cell weight (specific cell activity) of 4.1 Umg(-1) with activity per protein broth (specific activity) of 266 Umg(-1), whereas cutinase-(WP)(2) was secreted with a specific cell activity of 2.1 Umg(-1) with a specific activity of 200 Umg(-1), and cutinase-(WP)(4) with a specific cell activity of 0.7 Umg(-1) with a specific activity of 15 Umg(-1). The results indicate that the fusion of hydrophobic peptides to cutinase that changes the physical properties of the fused protein limits cutinase secretion and subsequently leads to a lower plasmid stability and lower yeast cell growth. These effects were observed under different cultivation conditions (shake flask and bioreactor) and cultivation strategies (batch culture versus fed-batch culture).  相似文献   

2.
Membrane proteins are challenging targets for structural biologists. Finding optimal candidates for such studies requires extensive and laborious screening of protein expression and/or stability in detergent. The use of green fluorescent protein (GFP) as a reporter has enormously facilitated these studies; however, its 238 residues can potentially alter the intrinsic properties of the target (e.g., expression or stability). With the aim of minimizing undesired effects of full-length GFP, here we describe the utility of a split GFP reporter during precrystallization studies of membrane proteins. GFP fluorescence appeared by complementation of the first 15 residues of GFP (GFP(11)) (fused to the C terminus of a membrane protein target) with the remaining nonfluorescent GFP (GFP(1-10)). The signal obtained after sequential expression of SteT (l-serine/l-threonine exchanger of Bacillus subtilis) fused to GFP(11) followed by GFP(1-10) specifically measured the protein fraction inserted into the Escherichia coli cytoplasmic membrane, thereby discarding protein aggregates confined as inclusion bodies. Furthermore, in vitro complementation of purified SteT-GFP(11) with purified GFP(1-10) was exploited to rapidly assess the stability of wild-type and G294V mutant versions of SteT-GFP(11) following detergent solubilization and purification. This method can be applied in a medium- to high-throughput manner with multiple samples.  相似文献   

3.
The rapid assessment of protein solubility is essential for evaluating expressed proteins and protein variants for use as reagents for downstream studies. Solubility screens based on antibody blots are complex and have limited screening capacity. Protein solubility screens using split beta-galactosidase in vivo and in vitro can perturb protein folding. Split GFP used for monitoring protein interactions folds poorly, and to overcome this limitation, we recently developed a protein-tagging system based on self-complementing split GFP derived from an exceptionally well folded variant of GFP termed 'superfolder GFP'. Here we present the step-by-step procedure of the solubility assay using split GFP. A 15-amino-acid GFP fragment, GFP 11, is fused to a test protein. The GFP 1-10 detector fragment is expressed separately. These fragments associate spontaneously to form fluorescent GFP. The fragments are soluble, and the GFP 11 tag has minimal effect on protein solubility and folding. We describe high-throughput protein solubility screens amenable both for in vivo and in vitro formats. The split-GFP system is composed of two vectors used in the same strain: pTET GFP 11 and pET GFP 1-10 (Fig. 1 and Supplementary Note online). The gene encoding the protein of interest is cloned into the pTET GFP 11 vector (resulting in an N-terminal fusion) and transformed into Escherichia coli BL21 (DE3) cells containing the pET GFP 1-10 plasmid. We also describe how this system can be used for selecting soluble proteins from a library of variants (Box 1). The large screening power of the in vivo assay combined with the high accuracy of the in vitro assay point to the efficiency of this two-step split-GFP tool for identifying soluble clones suitable for purification and downstream applications.  相似文献   

4.
An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box–Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD600nm) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.  相似文献   

5.
Culture conductivity and on-line NADH fluorescence were used to measure cellular growth in plant cell suspension cultures ofPodophyllum hexandrum. An inverse correlation between dry cell weight and medium conductivity was observed during shake flask cultivation. A linear relationship between dry cell weight and culture NADH fluorescence was obtained during the exponential phase of batch cultivation in a bioreactor under the pH stat (pH 6) conditions. It was observed that conductivity measurement were suitable for biomass characterisation under highly dynamic uncontrolled shake flask cultivation conditions. However, if the acid/alkali feeding is done for pH control the conductivity measurement could not be applied. On the other hand the NADH fluorescence measurement allowed online-in situ biomass monitoring of rather heterogenous plant cell suspension cultures in bioreactor even under the most desirable pH stat conditions.  相似文献   

6.
The effects of process conditions on proteolysis of three recombinant IgG-binding proteins ZT3, ZZT3 and protein A in E. coli were studied. SDS/PAGE shows that the relative amount of degradation intermediates of ZT3 in a shake flask cultivation is much higher than that in a bioreactor culture. The rate of proteolysis of ZZT3 and protein A was also higher in shake flask cultures than in bioreactor cultures. The proteolysis rate constant of ZZT3 was 12/h in a shake flask but only 2.1/h in a bioreactor. Corresponding values for protein A were 2.4/h and 1.0/h, respectively. High proteolysis rate constants correlated with lower product yields.  相似文献   

7.
A multiple vector system for the intracellular high-level production of affinity tagged recombinant proteins in Bacillus megaterium was developed. The N- and C-terminal fusion of a protein of interest to a Strep II and a His(6)-tag is possible. Corresponding genes are expressed under the control of a xylose-inducible promoter in a xylose isomerase deficient host strain. The exemplatory protein production of green fluorescent protein (GFP) showed differences in produced and recovered protein amounts in dependence of the employed affinity tag and its N- or C-terminal location. Up to 9 mg GFP per liter shake flask culture were purified using one-step affinity chromatography. Integration of a protease cleavage site into the recombinant fusion protein allowed tag removal via tobacco etch virus (TEV) protease or Factor Xa treatment and a second affinity chromatographic step. Up to 274 mg/L culture were produced at 52 g CDW/L using a glucose limited fedbatch cultivation. GFP production and viability of the production host were followed by flow cytometry.  相似文献   

8.
《Process Biochemistry》2010,45(11):1769-1778
A set of different green fluorescent protein (GFP) Escherichia coli reporter strains have been evaluated in mini- and stirred bioreactors operating in fed-batch mode with different degrees of perturbations in order to estimate their potential use as process-related stress biosensor. The mini-bioreactor platform comprises a set of parallel shake flasks operating in fed-batch mode. The advantage of this system is its high experimental throughput for the evaluation of the GFP synthesis capacity of our reporter strains. In the case of classical shake flask system, no significant evolution of GFP synthesis have been observed, considering the reduced microbial growth period allowed by the system, whereas in the case of fed-batch operated mini-bioreactors, evolution of GFP synthesis, as well as GFP distribution among the microbial population, has been observed for three preselected strains (prpoS, puspA and posmC::gfp). More interestingly, a binary mode of expression has been observed in the case of the cultures carried out with the reporter strains for which GFP synthesis is under the control of the rpoS promoter which is induced under carbon limitation conditions. However, the generation of controlled glucose perturbations is relatively limited in this system and, in a second step fully automated bioreactor with a sclae-down strategy has been used to correlate the response of a prpoS::gfp strains with extracellular glucose perturbations. In the case of the culture performed in perturbed bioreactor (glucose intermittent feeding or glucose addition at the level of the recycle loop of a two-compartment scale-down bioreactor), the slowdown of the GFP synthesis resulting in the observation of a binary repartition of GFP content among the microbial population, has been observed. This observation led to the conclusion that the prpoS::gfp can be used as a biosensor for the validation of a fed-batch profile in industrial-scale bioreactors.  相似文献   

9.
Kaddoum L  Magdeleine E  Waldo GS  Joly E  Cabantous S 《BioTechniques》2010,49(4):727-8, 730, 732 passim
Although epitope tags are useful to detect intracellular proteins and follow their localization with antibodies, background and nonspecific staining often remain problematic. We describe a simple assay based on the split GFP complementation system. Proteins tagged with the 15-amino acid GFP 11 fragment are detected with a solution of the recombinant nonfluorescent complementary GFP 1-10 fragment to reconstitute a fluorescent GFP. In contrast to antibody-based staining methods, this one-step assay presents high specificity and very low background of fluorescence, thus conferring higher signal-to-noise ratios. We demonstrate that this new application of the split GFP tagging system facilitates detection of proteins displaying various subcellular localizations using flow cytometry and microscopy analysis.  相似文献   

10.
Summary Data presented here shows a time course analysis of E. coli shake flask cultures expressing the reporter gene green fluorescent protein (GFP) with simultaneous comparison of microbial fluorescence intensity measurements and GFP concentration measured by Western blot. There is an apparent lag between the presence of GFP and its fluorescence due to the time required for formation of the chromophore. We demonstrate that GFP fluorescence can be used as a quantifiable reporter gene, provided the cyclization time for chromophore formation is considered.  相似文献   

11.
Green fluorescent protein (GFP) is useful for studying protein trafficking in plant cells. This utility could potentially be extended to develop an efficient secretory reporter system or to enable on-line monitoring of secretory recombinant protein production in plant cell cultures. Toward this end, the aim of the present study was to: (1) demonstrate and characterize high levels of secretion of fluorescent GFP from transgenic plant cell culture; and (2) examine the utility of GFP fluorescence for monitoring secreted recombinant protein production. In this study we expressed in tobacco cell cultures a secretory GFP construct made by splicing an Arabidopsis basic chitinase signal sequence to GFP. Typical extracellular GFP accumulation was 12 mg/L after 10 to 12 days of culture. The secreted GFP is functional and it accounts for up to 55% of the total GFP expressed. Findings from culture treatments with brefeldin A suggest that GFP is secreted by the cultured tobacco cells via the classical endoplasmic reticulum-Golgi pathway. Over the course of flask cultures, medium fluorescence increased with the secreted GFP concentrations that were determined using either Western blot or enzyme-linked immunoassay. Real-time monitoring of secreted GFP in plant cell cultures by on-line fluorescence detection was verified in bioreactor cultures in which the on-line culture fluorescence signals showed a linear dependency on the secreted GFP concentrations.  相似文献   

12.
The production of rifamycins B and SV using glucose as main C-source by Amycolatopsis mediterranei in batch and fed-batch culture was investigated. Fed-batch culture using glucose as mono feeding substrate either in the form of pulse addition, in case of shake flask, or with constant feeding rate, in bioreactor level, proved to be an alternative production system with a significant increase in both volumetric and specific antibiotic production. The maximal concentrations of about 1146 mg/l and 2500 mg/l of rifamycins B and SV, respectively, was obtained in fed-batch culture in bioreactor level under non-oxygen limitation. On the other hand, the rate of rifamycins production was increased from 6.58 to 12.13 mg/l x h for rifamycin B and from 9.47 to 31.83 mg/l x h for rifamycin SV on the bioprocess transfer and improvement from the conventional batch cultivation in shake flask to fed-batch cultivation in stirred tank bioreactor.  相似文献   

13.
目的:构建高效表达白地霉脂肪酶的毕赤酵母重组菌株,并对筛选得到的菌株进行摇瓶发酵条件优化和分批补料高密度发酵工艺研究。方法:将诱导型表达载体pPIC9K-gcl电转化至毕赤酵母GS115。通过橄榄油-罗丹明B平板和摇瓶发酵筛选高脂肪酶活力的重组菌株,运用基于TaqMan探针的实时荧光定量PCR 法确定其拷贝数,并对菌株进行摇瓶发酵条件优化。在此基础上,研究重组菌在3L 发酵罐中的高密度发酵工艺。结果:筛选得到一株具有3 个白地霉脂肪酶基因拷贝的菌株GS115/pPIC9K-gcl 78#,初始酶活力为220 U/ml。当摇瓶发酵条件为甲醇诱导96 h,每24 h甲醇添加量1 %,接种量2 %,培养基初始pH 7.0,500 ml摇瓶装液量50 ml,甲醇诱导温度25℃ 时酶活力达735 U/ml。3L 发酵罐高密度发酵176.5 h,酶活力达到3360 U/ml,总蛋白含量达到4.30 g/L,且发酵过程中细胞活性一直保持在96 % 以上。结论:基因拷贝数与重组菌株的产酶水平呈正相关,摇瓶优化可显著提高重组菌株的产酶能力,为白地霉脂肪酶的工业化生产奠定了技术基础。  相似文献   

14.
For strain improvement, robust and scalable high-throughput cultivation systems as well as simple and rapid high-throughput detection methods are crucial. However, most of the screening methods for lactic acid bacteria (LAB) strains were conducted in shake flasks and detected by high-performance liquid chromatography (HPLC), making the screening program laborious, time-consuming and costly. In this study, an integrated strategy for high-throughput screening of high l-lactic acid-productivity strains by Bacillus coagulans in deep-well microtiter plates (MTPs) was developed. The good agreement of fermentation results obtained in the MTPs platform with shake flasks confirmed that 24-well U-bottom MTPs could well alternate shake flasks for cell cultivation as a scale-down tool. The high-throughput pH indicator (bromocresol green) and l-lactate oxidase (LOD) assays were subsequently developed to qualitatively and quantitatively analyze l-lactic acid concentration. Together with the color halos method, the pH indicator assay and LOD assay, the newly developed three-step screening strategy has greatly accelerated the screening process for LAB strains with low cost. As a result, two high l-lactic acid-productivity mutants, IH6 and IIIB5, were successfully screened out, which presented, respectively, 42.75 and 46.10 % higher productivities than that of the parent strain in a 5-L bioreactor.  相似文献   

15.
Chikungunya, a mosquito-borne viral disease caused by Chikungunya virus (CHIKV), has drawn substantial attention after its reemergence causing massive outbreaks in tropical regions of Asia and Africa. The recombinant envelope 2 (rE2) protein of CHIKV is a potential diagnostic as well as vaccine candidate. Development of cost-effective cultivation media and appropriate culture conditions are generally favorable for large-scale production of recombinant proteins in Escherichia coli. The effects of medium composition and cultivation conditions on the production of recombinant Chikungunya virus E2 (rCHIKV E2) protein were investigated in shake flask culture as well as batch cultivation of Escherichia coli. Further, the fed-batch process was also carried out for high cell density cultivation of E. coli expressing rE2 protein. Expression of rCHIKV E2 protein in E. coli was induced with 1 mM isopropyl-beta-thiogalactoside (IPTG) at ~23 g dry cell weight (DCW) per liter of culture and yielded an insoluble protein aggregating to form inclusion bodies. The final DCW after fed-batch cultivation was ~35 g/l. The inclusion bodies were isolated, solubilized in 8 M urea and purified through affinity chromatography to give a final product yield of ~190 mg/l. The reactivity of purified E2 protein was confirmed by Western blotting and enzyme-linked immunosorbent assay. These results show that rE2 protein of CHIKV may be used as a diagnostic reagent or for further prophylactic studies. This approach of producing rE2 protein in E. coli with high yield may also offer a promising method for production of other viral recombinant proteins.  相似文献   

16.
An on-line cell disruption system for at-line monitoring of the intracellular concentration of recombinant human superoxide dismutase (rhSOD) in a genetically modified Escherichia coli strain, HMS174(DE3) (pET11a/rhSOD), in bioreactor cultivations is described. The sampled bacteria were disrupted on-line by rapid mixing with a nonionic detergent. The recombinant protein content of the lysed bacterial sample was quantitated by a subsequent surface plasmon resonance biosensor with a specific monoclonal antibody. Extraction efficiency of the monitoring system was optimized with respect to the flow rate ratio of the cell suspension and the detergent at relevant cell densities with the aim to attain rapid monitoring. Monitoring was demonstrated for a shake flask culture and a glucose-limited fed-batch cultivation. The results are compared with a traditional enzyme-linked immunosorbent assay method showing a correlation coefficient of R2 = 0.97. Extraction efficiency of rhSOD reached 95-99% at a total processing time of 1.8-2.6 min and a contact time of 0.8-1.4 min. The possibility of extending the monitoring system to other intracellular proteins is discussed.  相似文献   

17.
Glucosamine synthase (GlmS) converts fructose-6-phosphate to glucosamine-6-phosphate. Overexpression of GlmS in Escherichia coli increased synthesis of glucosamine-6-P, which was dephosphorylated and secreted as glucosamine into the growth medium. The E. coli glmS gene was improved through error-prone polymerase chain reaction (PCR) in order to develop microbial strains for fermentation production of glucosamine. Mutants producing higher levels of glucosamine were identified by a plate cross-feeding assay and confirmed in shake flask cultures. Over 10 mutants were characterized and all showed significantly reduced sensitivity to inhibition by glucosamine-6-phosphate. Ki of mutants ranged from 1.4 to 4.0 mM as compared to 0.56 mM for the wild type enzyme. Product resistance resulted from single mutations (L468P, G471S) and/or combinations of mutations in the sugar isomerase domain. Most overexpressed GlmS protein was found in the form of inclusion bodies. Cell lysate from mutant 2123-72 contained twice as much soluble GlmS protein and enzyme activity as the strain overexpressing the wild type gene. Using the product-resistant mutant, glucosamine production was increased 60-fold.  相似文献   

18.
Overexpression of rhIFN-alpha2b was obtained by synthesizing a codon optimized gene for IFN-alpha2b and expressing it in the form of inclusion bodies (IBs) in Escherichia coli. The recombinant plasmid pRSET-IFNalpha, which had the IFN-alpha2b gene under the T7 promoter, was coexpressed with plasmid pGP1-2, which carried the gene for T7 RNA polymerase under the heat inducible lambdaP(L) promoter. This two plasmid expression system was optimized with respect to heat shock time, media, and time of induction in shake flask cultures. This was then scaled up into a bioreactor to get a maximum volumetric product yield of 5.2g/L at a final OD(600) of 67. At this point, the IBs represented approximately 40% of the total cellular protein. This high specific product yields eased the further downstream processing steps and improved product recoveries. The IBs were isolated and purified through ion exchange followed by step refolding to give a final product yield of approximately 3g/L, which is maximum reported in the literature. The bioassay of the refolded protein gave a specific activity of approximately 3 x 10(9)IU/mg protein.  相似文献   

19.
A Panax notoginseng cell culture was successfully scaled up from shake flask to 1.0-L bubble column reactor and concentric-tube airlift reactor. High-density bioreactor batch cultivation was carried out using a modified MS medium. The maximum cell density in batch cultures reached 20.1, 21.0 and 24.1 g/L in the shake flask, bubble column and airlift reactors, respectively, and their corresponding biomass productivity was 950, 1140 and 1350 mg/(L x d) for each. The productivity of ginseng saponin was 70, 96 and 99 mg/(L x d) in the flask, bubble column and airlift reactors, respectively; and the polysaccharide productivity reached 104, 119 and 151 mg/(L x d) for each. Furthermore, a fed-batch cultivation strategy was developed on the basis of specific oxygen uptake rate (SOUR), i.e., sucrose feeding before a sharp decrease of SOUR, and the highest cell density of 29.7 g/L was successfully achieved in the airlift bioreactor on day 17 with a very high biomass productivity of 1520 mg/(L x d). The concentrations of ginseng saponin and polysaccharide reached about 2.1 and 3.0 g/L, respectively, and their productivity was 106 (saponin) and 158 mg/(L x d) (polysaccharide). This work successfully demonstrated the high-density bioreactor cultivation of P. notoginseng cells in pneumatically agitated bioreactors and the reproduction of the shake flask culture results in bioreactors. The cell density, biomass productivity, production titer and productivity of both ginseng saponin and polysaccharide obtained here were the highest that have been reported on a reactor scale for all the ginseng species.  相似文献   

20.
目的:通过对毕赤酵母中试发酵工艺的改进,建立一种简便可行的重组低出血抗凝蛋白(EH)的中试发酵工艺,为EH蛋白的放大生产研究奠定基础。方法:首先通过摇瓶培养绘测毕赤酵母工程菌的生长曲线,然后根据生长曲线,将对数生长期的菌种经过两级摇瓶培养放大后,直接接种到500 L的发酵罐中放大培养,通过发酵液的D600nm值、溶氧值(DO2)及菌体湿重动态监测细菌的生长状态,并用流加甲醇的方法诱导表达目的蛋白;表达上清经超滤、两步离子交换层析纯化获得目的蛋白;用非还原型SDS-PAGE和HPLC检测目的蛋白的纯度;用SDS-PAGE和质谱方法分析目的蛋白的相对分子质量;用Western印迹验证目的蛋白;用凝块法检测目的蛋白的抗凝活性。结果:发酵结束时,上清中蛋白含量达1.41 g/L,经后期分离纯化,得到约21 g EH蛋白,SDS-PAGE分析可见EH蛋白在还原状态下表观相对分子质量约为13.2×103±0.2×103,质谱分析相对分子质量约为7.3×103±0.73×103;Western印迹表明检测条带为目的蛋白,能被抗水蛭素抗体特异性结合;非还原型SDS-PAGE和HPLC测得EH蛋白的纯度均高于95%;凝块法检测EH蛋白的抗凝比活性为512~1024 ATU/mg。结论:建立了一条简便可行的EH蛋白的中试放大发酵生产工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号