首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Germination is the irreversible loss of spore-specific properties prior to outgrowth. Because germinating spores become more susceptible to killing by stressors, induction of germination has been proposed as a spore control strategy. However, this strategy is limited by superdormant spores that remain unaffected by germinants. Harsh chemicals and heat activation are effective for stimulating germination of superdormant spores but are impractical for use in a hospital setting, where Clostridium difficile spores present a challenge. Here, we tested whether osmotic activation solutes will provide a mild alternative for stimulation of superdormant C. difficile spores in the presence of germinants as previously demonstrated in several species of Bacillus. In addition, we tested the hypothesis that the limitations of superdormancy can be circumvented with a combined approach using nisin, a FDA-approved safe bacteriocin, to inhibit outgrowth of germinated spores and osmotic activation solutes to enhance outgrowth inhibition by stimulating superdormant spores.

Principal Findings

Exposure to germination solution triggered ∼1 log10 colony forming units (CFU) of spores to germinate, and heat activation increased the spores that germinated to >2.5 log10CFU. Germinating spores, in contrast to dormant spores, became susceptible to inhibition by nisin. The presence of osmotic activation solutes did not stimulate germination of superdormant C. difficile spores exposed to germination solution. But, in the absence of germination solution, osmotic activation solutes enhanced nisin inhibition of superdormant spores to >3.5 log10CFU. The synergistic effects of osmotic activation solutes and nisin were associated with loss of membrane integrity.

Conclusions

These findings suggest that the synergistic effects of osmotic activation and nisin bypass the limitations of germination as a spore control strategy, and might be a novel method to safely and effectively reduce the burden of C.difficile spores on skin and environmental surfaces.  相似文献   

2.

Background

Removing spores of Clostridium difficile and Bacillus anthracis from skin is challenging because they are resistant to commonly used antimicrobials and soap and water washing provides only modest efficacy. We hypothesized that hygiene interventions incorporating a sporicidal electrochemically generated hypochlorous acid solution (Vashe®) would reduce the burden of spores on skin.

Methods

Hands of volunteers were inoculated with non-toxigenic C. difficile spores or B. anthracis spore surrogates to assess the effectiveness of Vashe solution for reducing spores on skin. Reduction in spores was compared for Vashe hygiene interventions versus soap and water (control). To determine the effectiveness of Vashe solution for removal of C. difficile spores from the skin of patients with C. difficile infection (CDI), reductions in levels of spores on skin were compared for soap and water versus Vashe bed baths.

Results

Spore removal from hands was enhanced with Vashe soak (>2.5 log10 reduction) versus soap and water wash or soak (~2.0 log10 reduction; P <0.05) and Vashe wipes versus alcohol wipes (P <0.01). A combined approach of soap and water wash followed by soaking in Vashe removed >3.5 log10 spores from hands (P <0.01 compared to washing or soaking alone). Bed baths using soap and water (N =26 patients) did not reduce the percentage of positive skin cultures for CDI patients (64% before versus 57% after bathing; P =0.5), whereas bathing with Vashe solution (N =21 patients) significantly reduced skin contamination (54% before versus 8% after bathing; P =0.0001). Vashe was well-tolerated with no evidence of adverse effects on skin.

Conclusions

Vashe was safe and effective for reducing the burden of B. anthracis surrogates and C. difficile spores on hands. Bed baths with Vashe were effective for reducing C. difficile on skin. These findings suggest a novel strategy to reduce the burden of spores on skin.  相似文献   

3.
In previous studies workers determined that two lactic acid bacterium isolates, Lactococcus lactis subsp. lactis C-1-92 and Enterococcus durans 152 (competitive-exclusion bacteria [CE]), which were originally obtained from biofilms in floor drains, are bactericidal to Listeria monocytogenes or inhibit the growth of L. monocytogenes both in vitro and in biofilms at 4 to 37°C. We evaluated the efficacy of these isolates for reducing Listeria spp. contamination of floor drains of a plant in which fresh poultry is processed. Baseline assays revealed that the mean numbers of Listeria sp. cells in floor drains sampled on six different dates (at approximately biweekly intervals) were 7.5 log10 CFU/100 cm2 for drain 8, 4.9 log10 CFU/100 cm2 for drain 3, 4.4 log10 CFU/100 cm2 for drain 2, 4.1 log10 CFU/100 cm2 for drain 4, 3.7 log10 CFU/100 cm2 for drain 1, and 3.6 log10 CFU/100 cm2 for drain 6. The drains were then treated with 107 CE/ml in an enzyme-foam-based cleaning agent four times in 1 week and twice a week for the following 3 weeks. In samples collected 1 week after CE treatments were applied Listeria sp. cells were not detectable (samples were negative as determined by selective enrichment culture) for drains 4 and 6 (reductions of 4.1 and 3.6 log10 CFU/100 cm2, respectively), and the mean numbers of Listeria sp. cells were 3.7 log10 CFU/100 cm2 for drain 8 (a reduction of 3.8 log10 CFU/100 cm2), <1.7 log10 CFU/100 cm2 for drain 1 (detectable only by selective enrichment culture; a reduction of 3.3 log10 CFU/100 cm2), and 2.6 log10 CFU/100 cm2 for drain 3 (a reduction of 2.3 log10 CFU/100 cm2). However, the aerobic plate counts for samples collected from floor drains before, during, and after CE treatment remained approximately the same. The results indicate that application of the two CE can greatly reduce the number of Listeria sp. cells in floor drains at 3 to 26°C in a facility in which fresh poultry is processed.  相似文献   

4.

Background

Clostridium difficile is an anaerobic, spore-forming bacterium that is the most common cause of healthcare-associated diarrhea in developed countries. Control of C. difficile is challenging because the spores are resistant to killing by alcohol-based hand hygiene products, antimicrobial soaps, and most disinfectants. Although initiation of germination has been shown to increase susceptibility of spores of other bacterial species to radiation and heat, it was not known if triggering of germination could be a useful strategy to increase susceptibility of C. difficile spores to radiation or other stressors.

Principal Findings

Here, we demonstrated that exposure of dormant C. difficile spores to a germination solution containing amino acids, minerals, and taurocholic acid resulted in initiation of germination in room air. Germination of spores in room air resulted in significantly enhanced killing by ultraviolet-C (UV-C) radiation and heat. On surfaces in hospital rooms, application of germination solution resulted in enhanced eradication of spores by UV-C administered by an automated room decontamination device. Initiation of germination under anaerobic, but not aerobic, conditions resulted in increased susceptibility to killing by ethanol, suggesting that exposure to oxygen might prevent spores from progressing fully to outgrowth. Stimulation of germination also resulted in reduced survival of spores on surfaces in room air, possibly due to increased susceptibility to stressors such as oxygen and desiccation.

Conclusions

Taken together, these data demonstrate that stimulation of germination could represent a novel method to enhance killing of spores by UV-C, and suggest the possible application of this strategy as a means to enhance killing by other agents.  相似文献   

5.
A continuous-flow competitive exclusion (CFCE) culture model of human stool microflora was used to examine whether supplemental anaerobic gas is necessary for maintenance of anaerobes and inhibition of vancomycin-resistant Enterococcus (VRE). CFCE cultures of human stool microflora were maintained with supplemental nitrogen, without supplemental nitrogen, or with percolated room air. Cultures with or without supplemental nitrogen maintained >9 log10 CFU mL–1 of obligate anaerobes and eliminated 106 CFU mL–1 of VRE. When room air was percolated into the culture, anaerobes were detected at 2 log10 CFU mL–1, and the same VRE inoculum was not eliminated (P < 0.001). These data demonstrate that human stool CFCE cultures maintain high levels of obligate anaerobes and inhibit VRE without the addition of supplemental anaerobic gas.  相似文献   

6.

Background

The accessory gene regulator (agr) is a quorum sensing cluster of genes which control colonization and virulence in Staphylococcus aureus. We evaluated agr function in community- (CA) and healthcare-associated (HA) MRSA, to compare the pharmacodynamics and bactericidal activity of vancomycin against agr functional and dysfunctional HA-MRSA and CA-MRSA.

Methods

40 clinical isolates of MRSA from the Canadian Nosocomial Infection Surveillance Program were evaluated for delta-haemolysin production, as a surrogate marker of agr function. Time kill experiments were performed for vancomycin at 0 to 64 times the MIC against an initial inoculum of 106 and 108 cfu/ml of agr functional and dysfunctional CA-MRSA and HA-MRSA and these data were fit to a hill-type pharmacodynamic model.

Results

15% isolates were agr dysfunctional, which was higher among HA-MRSA (26.3%) versus CA-MRSA (4.76%). Against a low initial inoculum of 106 cfu/ml of CA-MRSA, vancomycin pharmacodynamics were similar among agr functional and dysfunctional strains. However, against a high initial inoculum of 108 cfu/ml, killing activity was notably attenuated against agr dysfunctional CA-MRSA (USA400) and HA-MRSA (USA100). CA-MRSA displayed a 20.0 fold decrease in the maximal reduction in bacterial counts (Emax) which was 3.71 log10 CFU/ml for agr functional vs. 2.41 log10 CFU/ml for agr dysfunctional MRSA (p = 0.0007).

Conclusions

Dysfunction in agr was less common among CA-MRSA vs. HA-MRSA. agr dysfunction demonstrated an impact on vancomycin bactericidal activity and pharmacodynamics against a high initial inoculum of CA-MRSA and HA-MRSA, which may have implications for optimal antimicrobial therapy against persistent, difficult to treat MRSA infections.  相似文献   

7.
Listeria monocytogenes is a food-borne pathogen which causes listeriosis and is difficult to eradicate from seafood processing environments; therefore, more effective control methods need to be developed. This study investigated the effectiveness of three bacteriophages (LiMN4L, LiMN4p and LiMN17), individually or as a three-phage cocktail at ≈9 log10 PFU/ml, in the lysis of three seafood-borne L. monocytogenes strains (19CO9, 19DO3 and 19EO3) adhered to a fish broth layer on stainless steel coupon (FBSSC) and clean stainless steel coupon (SSC), in 7-day biofilm, and dislodged biofilm cells at 15 ± 1 °C. Single phage treatments (LiMN4L, LiMN4p or LiMN17) decreased bacterial cells adhered to FBSSC and SSC by ≈3–4.5 log units. Phage cocktail reduced the cells on both surfaces (≈3.8–4.5 and 4.6–5.4 log10 CFU/cm2, respectively), to less than detectable levels after ≈75 min (detection limit = 0.9 log10 CFU/cm2). The phage cocktail at ≈5.8, 6.5 and 7.5 log10 PFU/cm2 eliminated Listeria contamination (≈1.5–1.7 log10 CFU/cm2) on SSC in ≈15 min. One-hour phage treatments (LiMN4p, LiMN4L and cocktail) in three consecutive applications resulted in a decrease of 7-day L. monocytogenes biofilms (≈4 log10 CFU/cm2) by ≈2–3 log units. Single phage treatments reduced dislodged biofilm cells of each L. monocytogenes strain by ≈5 log10 CFU/ml in 1 h. The three phages were effective in controlling L. monocytogenes on stainless steel either clean or soiled with fish proteins which is likely to occur in seafood processing environments. Phages were more effective on biofilm cells dislodged from the surface compared with undisturbed biofilm cells. Therefore, for short-term phage treatments of biofilm it should be considered that some disruption of the biofilm cells from the surface prior to phage application will be required.  相似文献   

8.
Aim: To investigate the viability, surface characteristics and ability of spores of a Geobacillus sp. isolated from a milk powder production line to adhere to stainless steel surfaces before and after a caustic (NaOH) wash used in clean‐in‐place regimes. Methods and Results: Exposing sessile spores to 1% NaOH at 65°C for 30 min decreased spore viability by two orders of magnitude. The zeta potential of the caustic treated spores decreased from ?20 to ?32 mV and they became more hydrophobic. Transmission electron microscopy revealed that caustic treated spores contained breaks in their spore coat. Under flow conditions, caustic treated spores suspended in 0·1 mol l?1 KCl were shown to attach to stainless steel in significantly greater numbers (4·6 log10 CFU cm?2) than untreated spores (3·6 log10 CFU cm?2). Conclusions: This research suggests that spores surviving a caustic wash will have a greater propensity to attach to stainless steel surfaces. Significance of Study: The practice of recycling caustic wash solutions may increase the risk of contaminating dairy processing surfaces with spores.  相似文献   

9.

Objective

Clostridium difficile infection (CDI) is a major cause of morbidity and biomarkers that predict severity of illness are needed. Procalcitonin (PCT), a serum biomarker with specificity for bacterial infections, has been little studied in CDI. We hypothesized that PCT associated with CDI severity.

Design

Serum PCT levels were measured for 69 cases of CDI. Chart review was performed to evaluate the presence of severity markers and concurrent acute bacterial infection (CABI). We defined the binary variables clinical score as having fever (T >38°C), acute organ dysfunction (AOD), and/or WBC >15,000 cells/mm3 and expanded score, which included the clinical score plus the following: ICU admission, no response to therapy, colectomy, and/or death.

Results

In univariate analysis log10 PCT associated with clinical score (OR 3.13, 95% CI 1.69–5.81, P<.001) and expanded score (OR 3.33, 95% CI 1.77–6.23, P<.001). In a multivariable model including the covariates log10 PCT, enzyme immunoassay for toxin A/B, ribotype 027, age, weighted Charlson-Deyo comorbidity index, CABI, and extended care facility residence, log10 PCT associated with clinical score (OR 3.09, 95% CI 1.5–6.35, P = .002) and expanded score (OR 3.06, 95% CI 1.49–6.26, P = .002). PCT >0.2 ng/mL was 81% sensitive/73% specific for a positive clinical score and had a negative predictive value of 90%.

Conclusion

An elevated PCT level associated with the presence of CDI severity markers and CDI was unlikely to be severe with a serum PCT level below 0.2 ng/mL. The extent to which PCT changes during CDI therapy or predicts recurrent CDI remains to be quantified.  相似文献   

10.
The effectiveness of pasteurization and the concentration of Mycobacterium avium subsp. paratuberculosis in raw milk have been identified in quantitative risk analysis as the most critical factors influencing the potential presence of viable Mycobacterium paratuberculosis in dairy products. A quantitative assessment of the lethality of pasteurization was undertaken using an industrial pasteurizer designed for research purposes with a validated Reynolds number of 62,112 and flow rates of 3,000 liters/h. M. paratuberculosis was artificially added to raw whole milk, which was then homogenized, pasteurized, and cultured, using a sensitive technique capable of detecting one organism per 10 ml of milk. Twenty batches of milk containing 103 to 104 organisms/ml were processed with combinations of three temperatures of 72, 75, and 78°C and three time intervals of 15, 20, and 25 s. Thirty 50-ml milk samples from each processed batch were cultured, and the logarithmic reduction in M. paratuberculosis organisms was determined. In 17 of the 20 runs, no viable M. paratuberculosis organisms were detected, which represented >6-log10 reductions during pasteurization. These experiments were conducted with very heavily artificially contaminated milk to facilitate the measurement of the logarithmic reduction. In three of the 20 runs of milk, pasteurized at 72°C for 15 s, 75°C for 25 s, and 78°C for 15 s, a few viable organisms (0.002 to 0.004 CFU/ml) were detected. Pasteurization at all temperatures and holding times was found to be very effective in killing M. paratuberculosis, resulting in a reduction of >6 log10 in 85% of runs and >4 log10 in 14% of runs.  相似文献   

11.
Campylobacter jejuni and Campylobacter-specific bacteriophage were enumerated from broiler chicken ceca selected from 90 United Kingdom flocks (n = 205). C. jejuni counts in the presence of bacteriophage (mean log10 5.1 CFU/g) were associated with a significant (P < 0.001) reduction compared to samples with Campylobacter alone (mean log10 6.9 CFU/g).  相似文献   

12.

Background

Chlorhexidine is a broad-spectrum antimicrobial commonly used to disinfect the skin of patients to reduce the risk of healthcare-associated infections. Because chlorhexidine is not sporicidal, it is not anticipated that it would have an impact on skin contamination with Clostridium difficile, the most important cause of healthcare-associated diarrhea. However, although chlorhexidine is not sporicidal as it is used in healthcare settings, it has been reported to kill spores of Bacillus species under altered physical and chemical conditions that disrupt the spore’s protective barriers (e.g., heat, ultrasonication, alcohol, or elevated pH). Here, we tested the hypothesis that similarly altered physical and chemical conditions result in enhanced sporicidal activity of chlorhexidine against C. difficile spores.

Principal Findings

C. difficile spores became susceptible to heat killing at 80°C within 15 minutes in the presence of chlorhexidine, as opposed to spores suspended in water which remained viable. The extent to which the spores were reduced was directly proportional to the concentration of chlorhexidine in solution, with no viable spores recovered after 15 minutes of incubation in 0.04%–0.0004% w/v chlorhexidine solutions at 80°C. Reduction of spores exposed to 4% w/v chlorhexidine solutions at moderate temperatures (37°C and 55°C) was enhanced by the presence of 70% ethanol. However, complete elimination of spores was not achieved until 3 hours of incubation at 55°C. Elevating the pH to ≥9.5 significantly enhanced the killing of spores in either aqueous or alcoholic chlorhexidine solutions.

Conclusions

Physical and chemical conditions that alter the protective barriers of C. difficile spores convey sporicidal activity to chlorhexidine. Further studies are necessary to identify additional agents that may allow chlorhexidine to reach its target within the spore.  相似文献   

13.
The behavior of Bacillus anthracis Sterne spores in sterile raw ground beef was measured at storage temperatures of 2 to 70°C, encompassing both bacterial growth and death. B. anthracis Sterne was weakly inactivated (−0.003 to −0.014 log10 CFU/h) at storage temperatures of 2 to 16°C and at temperatures greater than and equal to 45°C. Growth was observed from 17 to 44°C. At these intermediate temperatures, B. anthracis Sterne displayed growth patterns with lag, growth, and stationary phases. The lag phase duration decreased with increasing temperature and ranged from approximately 3 to 53 h. The growth rate increased with increasing temperature from 0.011 to 0.496 log10 CFU/h. Maximum population densities (MPDs) ranged from 5.9 to 7.9 log10 CFU/g. In addition, the fate of B. anthracis Ames K0610 was measured at 10, 15, 25, 30, 35, 40, and 70°C to compare its behavior with that of Sterne. There were no significant differences between the Ames and Sterne strains for both growth rate and lag time. However, the Ames strain displayed an MPD that was 1.0 to 1.6 times higher than that of the Sterne strain at 30, 35, and 40°C. Ames K0610 spores were rapidly inactivated at temperatures greater than or equal to 45°C. The inability of B. anthracis to grow between 2 and 16°C, a relatively low growth rate, and inactivation at elevated temperatures would likely reduce the risk for recommended ground-beef handling and preparation procedures.  相似文献   

14.
Biocide inactivation of Bacillus anthracis spores in the presence of food residues after a 10-min treatment time was investigated. Spores of nonvirulent Bacillus anthracis strains 7702, ANR-1, and 9131 were mixed with water, flour paste, whole milk, or egg yolk emulsion and dried onto stainless-steel carriers. The carriers were exposed to various concentrations of peroxyacetic acid, sodium hypochlorite (NaOCl), or hydrogen peroxide (H2O2) for 10 min at 10, 20, or 30°C, after which time the survivors were quantified. The relationship between peroxyacetic acid concentration, H2O2 concentration, and spore inactivation followed a sigmoid curve that was accurately described using a four-parameter logistic model. At 20°C, the minimum concentrations of peroxyacetic acid, H2O2, and NaOCl (as total available chlorine) predicted to inactivate 6 log10 CFU of B. anthracis spores with no food residue present were 1.05, 23.0, and 0.78%, respectively. At 10°C, sodium hypochlorite at 5% total available chlorine did not inactivate more than 4 log10 CFU. The presence of the food residues had only a minimal effect on peroxyacetic acid and H2O2 sporicidal efficacy, but the efficacy of sodium hypochlorite was markedly inhibited by whole-milk and egg yolk residues. Sodium hypochlorite at 5% total available chlorine provided no greater than a 2-log10 CFU reduction when spores were in the presence of egg yolk residue. This research provides new information regarding the usefulness of peroxygen biocides for B. anthracis spore inactivation when food residue is present. This work also provides guidance for adjusting decontamination procedures for food-soiled and cold surfaces.  相似文献   

15.
Analysis of 100 bagged lettuce and spinach samples showed mean total bacterial counts of 7.0 log10 CFU/g and a broad range of <4 to 8.3 log10 CFU/g. Most probable numbers (MPN) of ≥11,000 /g coliforms were found in 55 samples, and generic Escherichia coli bacteria were detected in 16 samples, but no E. coli count exceeded 10 MPN/g.  相似文献   

16.
The probiotic Lactobacillus rhamnosus GG is able to bind the potent hepatocarcinogen aflatoxin B1 (AFB1) and thus potentially restrict its rapid absorption from the intestine. In this study we investigated the potential of GG to reduce AFB1 availability in vitro in Caco-2 cells adapted to express cytochrome P-450 (CYP) 3A4, such that both transport and toxicity could be assessed. Caco-2 cells were grown as confluent monolayers on transmembrane filters for 21 days prior to all studies. AFB1 levels in culture medium were measured by high-performance liquid chromatography. In CYP 3A4-induced monolayers, AFB1 transport from the apical to the basolateral chamber was reduced from 11.1% ± 1.9% to 6.4% ± 2.5% (P = 0.019) and to 3.3% ± 1.8% (P = 0.002) within the first hour in monolayers coincubated with GG (1 × 1010 and 5 × 1010 CFU/ml, respectively). GG (1 × 1010 and 5 × 1010 CFU/ml) bound 40.1% ± 8.3% and 61.0% ± 6.0% of added AFB1 after 1 h, respectively. AFB1 caused significant reductions of 30.1% (P = 0.01), 49.4% (P = 0.004), and 64.4% (P < 0.001) in transepithelial resistance after 24, 48, and 72 h, respectively. Coincubation with 1 × 1010 CFU/ml GG after 24 h protected against AFB1-induced reductions in transepithelial resistance at both 24 h (P = 0.002) and 48 h (P = 0.04). DNA fragmentation was apparent in cells treated only with AFB1 cells but not in cells coincubated with either 1 × 1010 or 5 × 1010 CFU/ml GG. GG reduced AFB1 uptake and protected against both membrane and DNA damage in the Caco-2 model. These data are suggestive of a beneficial role of GG against dietary exposure to aflatoxin.  相似文献   

17.
We report the results of an interdisciplinary collaboration formed to assess the sterilizing capabilities of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). This newly-invented source of glow discharge plasma (the fourth state of matter) is capable of operating at atmospheric pressure in air and other gases, and of providing antimicrobial active species to surfaces and workpieces at room temperature as judged by viable plate counts. OAUGDP exposures have reduced log numbers of bacteria, Staphylococcus aureus and Escherichia coli, and endospores from Bacillus stearothermophilus and Bacillus subtilis on seeded solid surfaces, fabrics, filter paper, and powdered culture media at room temperature. Initial experimental data showed a two-log10 CFU reduction of bacteria when 2 × 102 cells were seeded on filter paper. Results showed ≥3 log10 CFU reduction when polypropylene samples seeded with E. coli (5 × 104) were exposed, while a 30 s exposure time was required for similar killing with S. aureus-seeded polypropylene samples. The exposure times required to effect ≥6 log10 CFU reduction of E. coli and S. aureus on polypropylene samples were no longer than 30 s. Experiments with seeded samples in sealed commercial sterilization bags showed little or no differences in exposure times compared to unwrapped samples. Plasma exposure times of less than 5 min generated ≥5 log10 CFU reduction of commercially prepared Bacillus subtilis spores (1 × 106); 7 min OAUGDP exposures were required to generate a ≥3 log10 CFU reduction for Bacillus stearothermophilus spores. For all microorganisms tested, a biphasic curve was generated when the number of survivors vs time was plotted in dose-response cures. Several proposed mechanisms of killing at room temperature by the OAUGDP are discussed. Received 06 June 1997/ Accepted in revised form 01 November 1997  相似文献   

18.
Spores from four Geobacillus spp. were isolated from a milk powder manufacturing line in New Zealand. Liquid sporulation media produced spore yields of ~107 spores ml−1; spores were purified using a two-phase system created with polyethylene glycol 4000 and 3 M phosphate buffer. The zeta potentials of the spores from the four isolates ranged from −10 to −20 mV at neutral pH, with an isoelectric point between pH 3 and 4. Through contact angle measurements, spores were found to be hydrophilic and had relative hydrophobicity values of 10 to 40%, as measured by the microbial adhesion to hexadecane assay. The most hydrophilic spore isolate with the smallest negative charge attached in the highest numbers to Thermanox and stainless steel (1 × 104 spores cm−2), with fewer spores attaching to glass (3 × 103 spores cm−2). However, spores produced by the other three strains attached in similar numbers (P > 0.05) to all substrata (~1 × 103 spores cm−2), indicating that there was no simple relationship between individual physicochemical interactions and spore adherence. Therefore, surface modifications which limit the attachment of one strain may not be effective for all stains, and control regimens need to be devised with reference to the characteristics of the particular strains of concern.  相似文献   

19.
A cattle trial using artificially inoculated calves was conducted to determine the effect of the addition of colicinogenic Escherichia coli strains capable of producing colicin E7 (a 61-kDa DNase) to feed on the fecal shedding of serotype O157:H7. The experiment was divided into three periods. In period 1, which lasted 24 days, six calves were used as controls, and eight calves received 107 CFU of E. coli (a mixture of eight colicinogenic E. coli strains) per g of feed. Both groups were orally inoculated with nalidixic acid-resistant E. coli O157:H7 strains 7 days after the treatment started. In periods 2 and 3, the treatment and control groups were switched, and the colicinogenic E. coli dose was increased 10-fold. During period 3, which lasted as long as period 1, both groups were reinoculated with E. coli O157:H7. The numbers of E. coli O157:H7 were consistently greater in the control groups during the three periods, but comparisons within each time period determined a statistically significant (P < 0.05) difference only at day 21 of period 1. However, when the daily average counts were compared between the period 1 control group and the period 3 treatment group that included the same six animals, an overall reduction of 1.1 log10 CFU/g was observed, with a maximum decrease of 1.8 log10 CFU/g at day 21 (overall statistical significance, P = 0.001). Serotype O157:H7 was detected in 44% of the treatment group's intestinal tissue samples and in 64% of those from the control group (P < 0.04). These results indicated that the daily addition of 108 CFU of colicin E7-producing E. coli per gram of feed could reduce the fecal shedding of serotype O157:H7.  相似文献   

20.
This is the first report on the use of a normally lethal dose of ciprofloxacin in a Campylobacter agar medium to kill all ciprofloxacin-sensitive Campylobacter spp. but allow the selective isolation and quantitation of naturally occurring presumptive ciprofloxacin-resistant Campylobacter CFU in rinses from retail raw chicken carcasses (RTCC). Thermophilic-group total Campylobacter CFU and total ciprofloxacin-resistant Campylobacter CFU (irrespective of species) were concurrently quantified in rinses from RTCC by direct plating of centrifuged pellets from 10 or 50 ml out of 400-ml rinse subsamples concurrently on Campylobacter agar and ciprofloxacin-containing Campylobacter agar at 42°C (detection limit = 0.90 log10 CFU/carcass). For 2001, 2002, and 2003, countable Campylobacter CFU were recovered from 85%, 96%, and 57% of RTCC, while countable ciprofloxacin-resistant Campylobacter CFU were recovered from 60%, 59%, and 17.5% of RTCC, respectively. Total Campylobacter CFU loads in RTCC rinses ranged from 0.90 to 4.52, 0.90 to 4.58, and 0.90 to 4.48 log10 CFU/carcass in 2001, 2002, and 2003, respectively. Total ciprofloxacin-resistant Campylobacter CFU loads in RTCC rinses ranged from 0.90 to 4.06, 0.90 to 3.95, and 0.90 to 3.04 log10 CFU/carcass in 2001, 2002, and 2003, respectively. Overall, total Campylobacter loads of 0.90 to 2.0, 2 to 3, 3 to 4, 4 to 5 log10 CFU/carcass, respectively, were recovered from 16%, 32%, 26%, and 5% of RTCC tested over the 2-year sampling period. For the same period, total ciprofloxacin-resistant Campylobacter loads of 0.90 to 2.0, 2 to 3, 3 to 4, and 4 to 5 log10 CFU/carcass, respectively, were recovered from 24%, 11%, 7%, and 0.2% of RTCC tested. There was a steady decline in total Campylobacter and total ciprofloxacin-resistant Campylobacter loads in RTCC rinses from 2001/2002 to 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号