首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cluster of differentiation 36 (CD36) is implicated in the intake of long-chain fatty acids and fat storage in various cell types including the pancreatic beta cell, thus contributing to the pathogenesis of metabolic stress and diabetes. Recent evidence indicates that CD36 undergoes post-translational modifications such as acetylation-deacetylation. However, putative roles of such modifications in its functional activation and onset of beta cell dysregulation under the duress of glucolipotoxicity (GLT) remain largely unknown. Using pharmacological approaches, we validated, herein, the hypothesis that acetylation-deacetylation signaling steps are involved in CD36-mediated lipid accumulation and downstream apoptotic signaling in pancreatic beta (INS-1832/13) cells under GLT. Exposure of these cells to GLT resulted in significant lipid accumulation without affecting the CD36 expression. Sulfo-n-succinimidyl oleate (SSO), an irreversible inhibitor of CD36, significantly attenuated lipid accumulation under GLT conditions, thus implicating CD36 in this metabolic step. Furthermore, trichostatin A (TSA) or valproic acid (VPA), known inhibitors of lysine deacetylases, markedly suppressed GLT-associated lipid accumulation with no discernible effects on CD36 expression. Lastly, SSO or TSA prevented caspase 3 activation in INS-1832/13?cells exposed to GLT conditions. Based on these findings, we conclude that an acetylation-deacetylation signaling step might regulate CD36 functional activity and subsequent lipid accumulation and caspase 3 activation in pancreatic beta cells exposed to GLT conditions. Identification of specific lysine deacetylases that control CD36 function should provide novel clues for the prevention of beta-cell dysfunction under GLT.  相似文献   

2.
The fruits of Cudrania tricuspidata (Carr.) Bur. (Moraceae) significantly inhibited pancreatic lipase, which plays a key role in fat absorption. Optimization of extraction conditions with minimum pancreatic lipase activity and maximum yield was determined using response surface methodology with three-level-three-factor Box–Behnken design (BBD). Regression analysis showed a good fit of the experimental data and the optimal condition was obtained as ethanol concentration, 74.5%; temperature 61.9 °C and extraction time, 13.5 h. The pancreatic lipase activity and extraction yield under optimal conditions were found to be 65.5% and 54.0%, respectively, which were well matched with the predicted value of 65.8% and 47.1%. Further fractionation of C. tricuspidata extract resulted in the isolation of compound 1, which was identified as 5,7,4′-trihydroxy-6,8-diprenylisoflavone. It inhibited pancreatic lipase activity with IC50 value of 65.0 μM. HPLC analysis suggested positive correlation between pancreatic lipase inhibition and 5,7,4′-trihydroxy-6,8-diprenylisoflavone of C. tricuspidata fruits.  相似文献   

3.
The Amazonian catfish, Panaque nigrolineatus, consume large amounts of wood in their diets. The nitrogen-fixing community within the gastrointestinal (GI) tract of these catfish was found to include nifH phylotypes that are closely related to Clostridium sp., Alpha and Gammaproteobacteria, and sequences associated with GI tracts of lower termites. Fish fed a diet of sterilized palm wood were found to contain nifH messenger RNA within their GI tracts, displaying high sequence similarity to the nitrogen-fixing Bradyrhizobium group. Nitrogenase activity, measured by acetylene reduction assays, could be detected in freshly dissected GI tract material and also from anaerobic enrichment cultures propagated in nitrogen-free enrichment media; nifH sequences retrieved from these cultures were dominated by Klebsiella- and Clostridium-like sequences. Microscopic examination using catalyzed reporter deposition-enhanced immunofluorescence revealed high densities of nitrogenase-containing cells colonizing the woody digesta within the GI tract, as well as cells residing within the intestinal mucous layer. Our findings suggest that the P. nigrolineatus GI tract provides a suitable environment for nitrogen fixation that may facilitate production of reduced nitrogen by the resident microbial population under nitrogen limiting conditions. Whether this community is providing reduced nitrogen to the host in an active or passive manner and whether it is present in a permanent or transient relationship remains to be determined. The intake of a cellulose rich diet and the presence of a suitable environment for nitrogen fixation suggest that the GI tract microbial community may allow a unique trophic niche for P. nigrolineatus among fish.  相似文献   

4.
Ro60/SSA is a vital auto antigen that is targeted in Sjogren's syndrome and systemic lupus erythematosus (SLE). However, its role in solid cancers has rarely been reported. The present study investigated the expression and function of Ro60/SSA in the development of pancreatic ductal adenocarcinoma (PDAC) both in vitro and in vivo. Immunohistochemistry was used to examine the expression of Ro60/SSA in PDAC and normal pancreatic tissues by using tissue microarray chips. The results showed that Ro60/SSA expression was increased in PDAC tissues compared with normal pancreatic tissues. Knockdown of Ro60/SSA by siRNA transfection significantly decreased cell proliferation and invasion in vitro. Furthermore, knockdown of Ro60/SSA inhibited the growth of subcutaneous tumors in vivo. Taken together, the current study provides evidence of new function of Ro60/SSA in the development of cancer. It facilitates pancreatic cancer proliferation, migration and invasion. Therefore, it may represent a novel molecular target for the management of pancreatic cancer.  相似文献   

5.
Embryonic stem cells (ESC) have two main characteristics: they can be indefinitely propagated in vitro in an undifferentiated state and they are pluripotent, thus having the potential to differentiate into multiple lineages. Such properties make ESCs extremely attractive for cell based therapy and regenerative treatment applications 1. However for its full potential to be realized the cells have to be differentiated into mature and functional phenotypes, which is a daunting task. A promising approach in inducing cellular differentiation is to closely mimic the path of organogenesis in the in vitro setting. Pancreatic development is known to occur in specific stages 2, starting with endoderm, which can develop into several organs, including liver and pancreas. Endoderm induction can be achieved by modulation of the nodal pathway through addition of Activin A 3 in combination with several growth factors 4-7. Definitive endoderm cells then undergo pancreatic commitment by inhibition of sonic hedgehog inhibition, which can be achieved in vitro by addition of cyclopamine 8. Pancreatic maturation is mediated by several parallel events including inhibition of notch signaling; aggregation of pancreatic progenitors into 3-dimentional clusters; induction of vascularization; to name a few. By far the most successful in vitro maturation of ESC derived pancreatic progenitor cells have been achieved through inhibition of notch signaling by DAPT supplementation 9. Although successful, this results in low yield of the mature phenotype with reduced functionality. A less studied area is the effect of endothelial cell signaling in pancreatic maturation, which is increasingly being appreciated as an important contributing factor in in-vivo pancreatic islet maturation 10,11.The current study explores such effect of endothelial cell signaling in maturation of human ESC derived pancreatic progenitor cells into insulin producing islet-like cells. We report a multi-stage directed differentiation protocol where the human ESCs are first induced towards endoderm by Activin A along with inhibition of PI3K pathway. Pancreatic specification of endoderm cells is achieved by inhibition of sonic hedgehog signaling by Cyclopamine along with retinoid induction by addition of Retinoic Acid. The final stage of maturation is induced by endothelial cell signaling achieved by a co-culture configuration. While several endothelial cells have been tested in the co-culture, herein we present our data with rat heart microvascular endothelial Cells (RHMVEC), primarily for the ease of analysis.  相似文献   

6.
Human pancreatic tumor cells have inherent ability to tolerate nutrition starvation which enables them to survive in the hypovascular tumor microenvironment. Discovery of agents that selectively inhibit the cancer cells’ tolerance to nutrition starvation leading to cancer cell death is a new anti-austerity approach in anti-cancer drug discovery. A series of coumarins derivatives were synthesized and evaluated for their anti-austerity activity against PANC-1 human pancreatic cancer cell line. The compound 7-Hydroxy-2-oxo-2H-chromene-3-carboxylic acid (3-phenylpropyl)amide (2c) showed highly potent selective cytotoxicity against PANC-1 cells under nutrient-deprived conditions, with a PC50 value of 0.44 μM, without exhibiting toxicity in normal, nutrient-rich medium. Compound 2c caused dramatic alterations in PANC-1 cell morphology, leading to cell death. The compound 2c was found to inhibit PANC-1 cell migration and colony formation in a concentration-dependent manner. The compound 2c is a lead structure for the anti-austerity drug development against pancreatic cancer.  相似文献   

7.
8.
A hypothesis that cherry rootstocks grown under optimal nutrient conditions are affected less by Pratylenchus penetrans infection than those grown under deficient nutrient conditions was tested by growing four Prunus avium L. rootstocks (''Mazzard'', ''Mahaleb'', ''GI148-1'', and ''GI148-8'') at a soil pH of 7.0 over a period of 3 months under greenhouse conditions (25 ñ 2 °C). Pratylenchus penetrans was inoculated at 0 (control) or 1,500 nematodes per g fresh root weight for a total of 3,600, 4,200, 10,500, and 11,400 per plant on Mazzard, Mahaleb, GI148-1, and GI148-8, respectively, with nutrients (commercial fertilizer) applied once at planting (deficient) or twice weekly (optimal). The experiment was repeated once. The optimum nutrient regime resulted in greater soil nutrient levels and plant growth; higher leaf concentrations of N, P, K, and Mg; and fewer P. penetrans than under the deficient nutrient regime. The addition of fertilizer either may increase nematode mortality in the soil or improve rootstock resistance to nematode infection. Increases in Ca in leaves from the nutrient-deficient and nematode-infected treatments suggested the plants were physiologically stressed. The Pf/Pi ratios indicated that these rootstocks may have had resistance to P. penetrans; however, because of the dominant role of nutrition in the experimental design, the question of resistance could not be properly addressed.  相似文献   

9.
In this study, 23 Debaryomyces hansenii strains, isolated from cheese and fish gut, were investigated in vitro for potential probiotic properties i.e. (1) survival under in vitro GI (gastrointestinal) conditions with different oxygen levels, (2) adhesion to Caco-2 intestinal epithelial cells and mucin, and (3) modulation of pro- and anti-inflammatory cytokine secretion by human monocyte-derived dendritic cells. As references two commercially available probiotic Saccharomyces cerevisiae var. boulardii (S. boulardii) strains were included in the study. Our results demonstrate that the different D. hansenii yeast strains had very diverse properties which could potentially lead to different probiotic effects. One strain of D. hansenii (DI 09) was capable of surviving GI stress conditions, although not to the same degree as the S. boulardii strains. This DI 09 strain, however, adhered more strongly to Caco-2 cells and mucin than the S. boulardii strains. Additionally, two D. hansenii strains (DI 10 and DI 15) elicited a higher IL-10/IL-12 ratio than the S. boulardii strains, indicating a higher anti-inflammatory effects on human dendritic cells. Finally, one strain of D. hansenii (DI 02) was evaluated as the best probiotic candidate because of its outstanding ability to survive the GI stresses, to adhere to Caco-2 cells and mucin and to induce a high IL-10/IL-12 ratio. In conclusion, this study shows that strains of D. hansenii may offer promising probiotic traits relevant for further study.  相似文献   

10.
Andrew Y. Koh 《Eukaryotic cell》2013,12(11):1416-1422
Ninety-five percent of infectious agents enter through exposed mucosal surfaces, such as the respiratory and gastrointestinal (GI) tracts. The human GI tract is colonized with trillions of commensal microbes, including numerous Candida spp. Some commensal microbes in the GI tract can cause serious human infections under specific circumstances, typically involving changes in the gut environment and/or host immune conditions. Therefore, utilizing animal models of fungal GI colonization and dissemination can lead to significant insights into the complex pathophysiology of transformation from a commensal organism to a pathogen and host-pathogen interactions. This paper will review the methodologic approaches used for modeling GI colonization versus dissemination, the insights learned from these models, and finally, possible future directions using these animal modeling systems.  相似文献   

11.
The initiation of flowering in Arabidopsis is retarded or abolished by environmental stresses. Focusing on salt stress, we provide a molecular explanation for this well-known fact. A protein complex consisting of GI, a clock component important for flowering and SOS2, a kinase activating the [Na+] antiporter SOS1, exists under no stress conditions. GI prevents SOS2 from activating SOS1. In the presence of NaCl, the SOS2/GI complex disintegrates and GI is degraded. SO2, together with the Ca2+-activated sensor of sodium ions, SOS3, activates SOS1. In gi mutants, SOS1 is constitutively activated and gi plants are more highly salt tolerant than wild type Arabidopsis. The model shows GI as a transitory regulator of SOS pathway activity whose presence or amount connects flowering to environmental conditions.  相似文献   

12.
Insulin-producing cells (IPCs) derived from human embryonic stem cells (hESCs) hold great potential for cell transplantation therapy in diabetes. Tremendous progress has been made in inducing differentiation of hESCs into IPCs in vitro, of which definitive endoderm (DE) protocol mimicking foetal pancreatic development has been widely used. However, immaturity of the obtained IPCs limits their further applications in treating diabetes. Forkhead box O1 (FoxO1) is involved in the differentiation and functional maintenance of murine pancreatic β cells, but its role in human β cell differentiation is under elucidation. Here, we showed that although FoxO1 expression level remained consistent, cytoplasmic phosphorylated FoxO1 protein level increased during IPC differentiation of hESCs induced by DE protocol. Lentiviral silencing of FoxO1 in pancreatic progenitors upregulated the levels of pancreatic islet differentiation-related genes and improved glucose-stimulated insulin secretion response in their progeny IPCs, whereas overexpression of FoxO1 showed the opposite effects. Notably, treatment with the FoxO1 inhibitor AS1842856 displayed similar effects with FoxO1 knockdown in pancreatic progenitors. These effects were closely associated with the mutually exclusive nucleocytoplasmic shuttling of FoxO1 and Pdx1 in the AS1842856-treated pancreatic progenitors. Our data demonstrated a promising effect of FoxO1 inhibition by the small molecule on gene expression profile during the differentiation, and in turn, on determining IPC maturation via modulating subcellular location of FoxO1 and Pdx1. Therefore, we identify a novel role of FoxO1 inhibition in promoting IPC differentiation of hESCs, which may provide clues for induction of mature β cells from hESCs and clinical applications in regenerative medicine.  相似文献   

13.
Resistance to proteases throughout the gastrointestinal (GI) tract is a prerequisite for milk-derived peptides to exert biological activities. In this work an in vitro multi-step static model to simulate complete digestion of the bovine milk proteins has been developed. The experimental set-up involved the sequential use of: (i) pepsin, (ii) pancreatic proteases, and (iii) extracts of human intestinal brush border membranes, in simulated gastric, duodenal and jejuneal environments, respectively. Enzymatic concentrations and reaction times were selected in order to closely reproduce the in vivo conditions. The aim was to identify the peptide candidates able to exhibit significant bioactive effects. Casein and whey protein peptides which survived the in vitro GI digestion have been identified by the combined application of HPLC and mass spectrometry techniques. While the permanence of the main potentially bioactive peptides from both casein and whey proteins was found of limited physiological relevance, the high resistance to proteolysis of specific regions of β-lactoglobulin (β-Lg), and especially that of the peptide β-Lg f125–135, could have implications for the immunogenic action of β-Lg in the insurgence of cow's milk allergy.  相似文献   

14.
Restoration of the functional potency of pancreatic islets either through enhanced proliferation (hyperplasia) or increase in size (hypertrophy) of beta cells is a major objective for intervention in diabetes. We have obtained experimental evidence that global knock-out of a small, single-span regulatory subunit of Na,K-ATPase, FXYD2, alters glucose control. Adult Fxyd2−/− mice showed significantly lower blood glucose levels, no signs of peripheral insulin resistance, and improved glucose tolerance compared with their littermate controls. Strikingly, there was a substantial hyperplasia in pancreatic beta cells from the Fxyd2−/− mice compared with the wild type littermates, compatible with an observed increase in the level of circulating insulin. No changes were seen in the exocrine compartment of the pancreas, and the mice had only a mild, well-adapted renal phenotype. Morphometric analysis revealed an increase in beta cell mass in KO compared with WT mice. This appears to explain a phenotype of hyperinsulinemia. By RT-PCR, Western blot, and immunocytochemistry we showed the FXYD2b splice variant in pancreatic beta cells from wild type mice. Phosphorylation of Akt kinase was significantly higher under basal conditions in freshly isolated islets from Fxyd2−/− mice compared with their WT littermates. Inducible expression of FXYD2 in INS 832/13 cells produced a reduction in the phosphorylation level of Akt, and phosphorylation was restored in parallel with degradation of FXYD2. Thus we suggest that in pancreatic beta cells FXYD2 plays a role in Akt signaling pathways associated with cell growth and proliferation.  相似文献   

15.
Our research group recently reported that pancreatic endocrine cancer cell lines are sensitive to the HDAC inhibitor trichostatin A (TSA). In the present paper, we show that the combined treatment of pancreatic endocrine tumour cell lines with TSA and the DNA methyltransferase inhibitor 5‐aza‐2′‐deoxycytidine (DAC) determines a strong synergistic inhibition of proliferation mainly due to apoptotic cell death. Proteomic analysis demonstrates that the modulation of specific proteins correlates with the antiproliferative effect of the drugs. A schematic network clarifies the most important targets or pathways involved in pancreatic endocrine cancer growth inhibition by single or combined drug treatments, which include proteasome, mitochondrial apoptotic pathway and caspase related proteins, p53 and Ras related proteins. A comparison between the patterns of proteins regulated by TSA or DAC in endocrine and ductal pancreatic cancer cell lines is also presented.  相似文献   

16.
BACKGROUNDCellular metabolism regulates stemness in health and disease.  A reduced redox state is essential for self-renewal of normal and cancer stem cells (CSCs). However, while stem cells rely on glycolysis, different CSCs, including pancreatic CSCs, favor mitochondrial metabolism as their dominant energy-producing pathway. This suggests that powerful antioxidant networks must be in place to detoxify mitochondrial reactive oxygen species (ROS) and maintain stemness in oxidative CSCs. Since glutathione metabolism is critical for normal stem cell function and CSCs from breast, liver and gastric cancer show increased glutathione content, we hypothesized that pancreatic CSCs also rely on this pathway for ROS detoxification.AIMTo investigate the role of glutathione metabolism in pancreatic CSCs.METHODSPrimary pancreatic cancer cells of patient-derived xenografts (PDXs) were cultured in adherent or CSC-enriching sphere conditions to determine the role of glutathione metabolism in stemness. Real-time polymerase chain reaction (PCR) was used to validate RNAseq results involving glutathione metabolism genes in adherent vs spheres, as well as the expression of pluripotency-related genes following treatment. Public TCGA and GTEx RNAseq data from pancreatic cancer vs normal tissue samples were analyzed using the webserver GEPIA2. The glutathione-sensitive fluorescent probe monochlorobimane was used to determine glutathione content by fluorimetry or flow cytometry. Pharmacological inhibitors of glutathione synthesis and recycling [buthionine-sulfoximine (BSO) and 6-Aminonicotinamide (6-AN), respectively] were used to investigate the impact of glutathione depletion on CSC-enriched cultures. Staining with propidium iodide (cell cycle), Annexin-V (apoptosis) and CD133 (CSC content) were determined by flow cytometry. Self-renewal was assessed by sphere formation assay and response to gemcitabine treatment was used as a readout for chemoresistance.RESULTSAnalysis of our previously published RNAseq dataset E-MTAB-3808 revealed up-regulation of genes involved in the KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway Glutathione Metabolism in CSC-enriched cultures compared to their differentiated counterparts. Consistently, in pancreatic cancer patient samples the expression of most of these up-regulated genes positively correlated with a stemness signature defined by NANOG, KLF4, SOX2 and OCT4 expression (P < 10-5). Moreover, 3 of the upregulated genes (MGST1, GPX8, GCCT) were associated with reduced disease-free survival in patients [Hazard ratio (HR) 2.2-2.5; P = 0.03-0.0054], suggesting a critical role for this pathway in pancreatic cancer progression. CSC-enriched sphere cultures also showed increased expression of different glutathione metabolism-related genes, as well as enhanced glutathione content in its reduced form (GSH). Glutathione depletion with BSO induced cell cycle arrest and apoptosis in spheres, and diminished the expression of stemness genes. Moreover, treatment with either BSO or the glutathione recycling inhibitor 6-AN inhibited self-renewal and the expression of the CSC marker CD133. GSH content in spheres positively correlated with intrinsic resistance to gemcitabine treatment in different PDXs r = 0.96, P = 5.8 × 1011). Additionally, CD133+ cells accumulated GSH in response to gemcitabine, which was abrogated by BSO treatment (P < 0.05). Combined treatment with BSO and gemcitabine-induced apoptosis in CD133+ cells to levels comparable to CD133- cells and significantly diminished self-renewal (P < 0.05), suggesting that chemoresistance of CSCs is partially dependent on GSH metabolism.CONCLUSIONOur data suggest that pancreatic CSCs depend on glutathione metabolism. Pharmacological targeting of this pathway showed that high GSH content is essential to maintain CSC functionality in terms of self-renewal and chemoresistance.  相似文献   

17.
Pancreatic β-cells are vulnerable to multiple stresses, leading to dysfunction and apoptotic death. Deterioration in β-cells function and mass is associated with type 2 diabetes. Comparative two-dimensional gel electrophoresis from pancreatic MIN6 cells that were maintained at varying glucose concentrations was carried out. An induced expression of a protein spot, detected in MIN6 cells experiencing high glucose concentration, was identified by mass spectrometry as the oxidized form of DJ-1. DJ-1 (park7) is a multifunctional protein implicated in familial Parkinsonism and neuroprotection in response to oxidative damage. The DJ-1 protein and its oxidized form were also induced following exposure to oxidative and endoplasmic reticulum stress in MIN6 and βTC-6 cells and also in mouse pancreatic islets. Suppression of DJ-1 levels by small interfering RNA led to an accelerated cell death, whereas an increase in DJ-1 levels by adenovirus-based infection attenuated cell death induced by H2O2 and thapsigargin in β-cell lines and mouse pancreatic islets. Furthermore, DJ-1 improved regulated insulin secretion under basal as well as oxidative and endoplasmic reticulum stress conditions in a dose-dependent manner. We identified TFII-I (Gtf2i) as DJ-1 partner in the cytosol, whereas the binding of TFII-I to DJ-1 prevented TFII-I translocation to the nucleus. The outcome was attenuation of the stress response. Our results suggest that DJ-1 together with TFII-I operate in concert to cope with various insults and to sustain pancreatic β-cell function.  相似文献   

18.
Numerous murine models have been developed to study human cancers and advance the understanding of cancer treatment and development. Here, a preclinical, murine pancreatic tumor model of hepatic metastases via a hemispleen injection of syngeneic murine pancreatic tumor cells is described. This model mimics many of the clinical conditions in patients with metastatic disease to the liver. Mice consistently develop metastases in the liver allowing for investigation of the metastatic process, experimental therapy testing, and tumor immunology research.  相似文献   

19.
Colonization of the gastrointestinal (GI) tract is initiated during birth and continually seeded from the individual’s environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated), while another group (control) was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07), and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively). The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as have a beneficial effect on systemic immune responses as demonstrated with M. hyopneumoniae infection.  相似文献   

20.
The quantitative characterization of ion channel properties in pancreatic β-cells under typical patch clamp conditions can be questioned because of the unreconciled differences in experimental conditions and observed behavior between microelectrode recordings of membrane potential in intact islets of Langerhans and patch recordings of single cells. Complex bursting is reliably observed in islets but not in isolated cells under patch clamp conditions. E. Rojas et al. (J. Membrane Biol. 143:65–77, 1995) have attempted to circumvent these incompatibilities by measuring currents in β-cells in intact islets by voltage-clamping with intracellular microelectrodes (150–250 MΩ tip resistance). The major potential pitfall is that β-cells within the islet are electrically coupled, and contaminating coupling currents must be subtracted from current measurements, just as linear leak currents are typically subtracted. To characterize the conditions under which such coupling current subtraction is valid, we have conducted a computational study of a model islet. Assuming that the impaled cell is well clamped, we calculate the native and coupling components of the observed current. Our simulations illustrate that coupling can be reliably subtracted when neighbor cells' potentials are constant or vary only slowly (e.g., during their silent phases) but not when they vary rapidly (e.g., during their active phases). We also show how to estimate coupling conductances in the intact islet from measurements of coupling currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号