首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis (Mtb) can persist in the human host in a latent state for decades, in part because it has the ability to withstand numerous stresses imposed by host immunity. Prior studies have established the essentiality of the periplasmic protease MarP for Mtb to survive in acidified phagosomes and establish and maintain infection in mice. However, the proteolytic substrates of MarP that mediate these phenotypes were unknown. Here, we used biochemical methods coupled with supravital chemical probes that facilitate imaging of nascent peptidoglycan to demonstrate that during acid stress MarP cleaves the peptidoglycan hydrolase RipA, a process required for RipA's activation. Failure of RipA processing in MarP‐deficient cells leads to cell elongation and chain formation, a hallmark of progeny cell separation arrest. Our results suggest that sustaining peptidoglycan hydrolysis, a process required for cell elongation, separation of progeny cells, and cell wall homeostasis in growing cells, may also be essential for Mtb's survival in acidic conditions.  相似文献   

2.
Tuberculosis associates with a wide spectrum of disease outcomes. The Beijing (Bj) lineage of Mycobacterium tuberculosis (Mtb) is suggested to be more virulent than other Mtb lineages and prone to elicit non-protective immune responses. However, highly heterogeneous immune responses were reported upon infection of innate immune cells with Bj strains or stimulation with their glycolipids. Using both in vitro and in vivo mouse models of infection, we here report that the molecular mechanism for this heterogeneity may be related to distinct TLR activations. Among this Mtb lineage, we found strains that preferentially activate TLR2, and others that also activate TLR4. Recognition of Mtb strains by TLR4 resulted in a distinct cytokine profile in vitro and in vivo, with specific production of type I IFN. We also uncover a novel protective role for TLR4 activation in vivo. Thus, our findings contribute to the knowledge of the molecular basis underlying how host innate immune cells handle different Mtb strains, in particular the intricate host-pathogen interaction with strains of the Mtb Bj lineage.  相似文献   

3.
4.
5.
Mycobacterium tuberculosis (Mtb) is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. 13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb''s central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt) Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections.  相似文献   

6.
杨瑞丽  孙佳楠  陆伟 《生命科学》2013,(11):1084-1088
结核分枝杆菌(Mycobacterium tuberculosis,Mtb)感染后能抑制宿主巨噬细胞(M西)的免疫反应,并在其中生存、复制。研究表明Mtb减毒株感染主要诱导宿主Mφ凋亡,凋亡能抑制胞内Mtb的活力;而Mtb毒力株感染能抑制凋亡的完成,诱导Mφ坏死,最终导致Mtb扩散、感染临近细胞。通过对Mtb感染诱导宿主Mφ不同死亡方式的讨论,进一步认识Mtb的致病机制。  相似文献   

7.
Co‐opting host cell protein synthesis is a hallmark of many virus infections. In response, certain host defense proteins limit mRNA translation globally, albeit at the cost of the host cell''s own protein synthesis. Here, we describe an interferon‐stimulated helicase, DDX60, that decreases translation from viral internal ribosome entry sites (IRESs). DDX60 acts selectively on type II IRESs of encephalomyocarditis virus (EMCV) and foot and mouth disease virus (FMDV), but not by other IRES types or by 5′ cap. Correspondingly, DDX60 reduces EMCV and FMDV (type II IRES) replication, but not that of poliovirus or bovine enterovirus 1 (BEV‐1; type I IRES). Furthermore, replacing the IRES of poliovirus with a type II IRES is sufficient for DDX60 to inhibit viral replication. Finally, DDX60 selectively modulates the amount of translating ribosomes on viral and in vitro transcribed type II IRES mRNAs, but not 5′ capped mRNA. Our study identifies a novel facet in the repertoire of interferon‐stimulated effector genes, the selective downregulation of translation from viral type II IRES elements.  相似文献   

8.
Complex immune and neurodegenerative disorders are the result of multiple interactions between common genetic variations having, individually, a weak effect on the disease susceptibility or resistance. Interestingly, some genes have been found to be associated with more than one disease although not necessarily the same SNPs are involved. In this context, single nucleotide polymorphisms in the 3′UTR region of type 1 receptor (VPAC-1) for vasoactive intestinal peptide (VIP) have been reported to be associated with some immune-mediated as well as with neurodegenerative diseases such as Alzheimer''s Disease (AD). Here, we demonstrate that variations at the 3′UTR of the VPAC-1 gene act synergistically to affect the expression of the luciferase as well as of the GFP reporter genes expressed in HEK293T cells. Moreover, the miRNA 525-5p, previously shown by us to target the 3′UTR of VPAC-1, is more efficient in decreasing GFP expression when co-expressed with constructs carrying the allele C at rs896 (p<10-3) suggesting that this miRNA regulates VPAC-1 expression at different levels depending on rs896 polymorphism and thus adding complexity to the network of disease susceptibility.  相似文献   

9.
《Autophagy》2013,9(9):1357-1370
Emerging evidence points to an important role of autophagy in the immune response mediated by dendritic cells (DC) against Mycobacterium tuberculosis (Mtb). Since current vaccination based on Bacillus Calmette-Guerin (BCG) is unable to stop the tuberculosis epidemic, a deeper comprehension of the alterations induced by Mtb in DC is essential for setting new vaccine strategies. Here, we compared the capacity of virulent (H37Rv) and avirulent (H37Ra) Mtb strains as well as BCG to modulate autophagy in human primary DC. We found that Mtb H37Rv impairs autophagy at the step of autophagosome-lysosome fusion. In contrast, neither Mtb H37Ra nor BCG strains were able to hamper autophagosome maturation. Both these attenuated strains have a functional inhibition of the 6kD early secreted antigenic target ESAT-6, an effector protein of the ESAT-6 Secretion System-1(ESX-1)/type VII secretion system. Notably, the ability to inhibit autophagy was fully restored in recombinant BCG and Mtb H37Ra strains in which ESAT-6 secretion was re-established by genetic complementation using either the ESX-1 region from Mtb (BCG::ESX-1) or the PhoP gene (Mtb H37Ra::PhoP), a regulator of ESAT-6 secretion. Importantly, the autophagic block induced by Mtb was overcome by rapamycin treatment leading to an increased interleukin-12 expression and, in turn, to an enhanced capacity to expand a Th1-oriented response. Collectively, our study demonstrated that Mtb alters the autophagic machinery through the ESX-1 system, and thereby opens new exciting perspectives to better understand the relationship between Mtb virulence and its ability to escape the DC-mediated immune response.  相似文献   

10.
Emerging evidence points to an important role of autophagy in the immune response mediated by dendritic cells (DC) against Mycobacterium tuberculosis (Mtb). Since current vaccination based on Bacillus Calmette-Guerin (BCG) is unable to stop the tuberculosis epidemic, a deeper comprehension of the alterations induced by Mtb in DC is essential for setting new vaccine strategies. Here, we compared the capacity of virulent (H37Rv) and avirulent (H37Ra) Mtb strains as well as BCG to modulate autophagy in human primary DC. We found that Mtb H37Rv impairs autophagy at the step of autophagosome-lysosome fusion. In contrast, neither Mtb H37Ra nor BCG strains were able to hamper autophagosome maturation. Both these attenuated strains have a functional inhibition of the 6kD early secreted antigenic target ESAT-6, an effector protein of the ESAT-6 Secretion System-1(ESX-1)/type VII secretion system. Notably, the ability to inhibit autophagy was fully restored in recombinant BCG and Mtb H37Ra strains in which ESAT-6 secretion was re-established by genetic complementation using either the ESX-1 region from Mtb (BCG::ESX-1) or the PhoP gene (Mtb H37Ra::PhoP), a regulator of ESAT-6 secretion. Importantly, the autophagic block induced by Mtb was overcome by rapamycin treatment leading to an increased interleukin-12 expression and, in turn, to an enhanced capacity to expand a Th1-oriented response. Collectively, our study demonstrated that Mtb alters the autophagic machinery through the ESX-1 system, and thereby opens new exciting perspectives to better understand the relationship between Mtb virulence and its ability to escape the DC-mediated immune response.  相似文献   

11.
12.
The Mycobacterium tuberculosis stress response factor SigH plays a crucial role in modulating the pathogen's response to heat, oxidative-stress, envelope damage and hypoxia. We hypothesized that the lack of this key stress response factor would alter the interaction between the pathogen and its host cells. We compared the interaction of Mtb, Mtb:Δ-sigH and a strain where the mutation had been genetically complemented (Mtb: Δ-sigH:CO) with primary rhesus macaque bone marrow derived macrophages (Rh-BMDMs). The expression of numerous inducible and homeostatic (CCL) β-chemokines and several apoptotic markers was induced to higher levels in the cells infected with Mtb:Δ-sigH, relative to Mtb or the complemented strain. The differential expression of these genes manifested into functional differences in chemotaxis and apoptosis in cells infected with these two strains. The mutant strain also exhibited reduced late-stage survival in Rh-BMDMs. We hypothesize that the product of one or more SigH-dependent genes may modulate the innate interaction of Mtb with host cells, effectively reducing the chemokine-mediated recruitment of immune effector cells, apoptosis of infected monocytes and enhancing the long-term survival and replication of the pathogen in this milieu The significantly higher induction of Prostaglandin Synthetase 2 (PTGS2 or COX2) in Rh-BMDMs infected with Mtb relative to Mtb: Δ-sigH may explain reduced apoptosis in Mtb-infected cells, as PTGS2 is known to inhibit p53-dependent apoptosis.The SigH-regulon modulates the innate interaction of Mtb with host phagocytes, perhaps as part of a strategy to limit its clearance and prolong its survival. The SigH regulon appears to be required to modulate innate immune responses directed against Mtb.  相似文献   

13.
Could some vaccines drive the evolution of more virulent pathogens? Conventional wisdom is that natural selection will remove highly lethal pathogens if host death greatly reduces transmission. Vaccines that keep hosts alive but still allow transmission could thus allow very virulent strains to circulate in a population. Here we show experimentally that immunization of chickens against Marek''s disease virus enhances the fitness of more virulent strains, making it possible for hyperpathogenic strains to transmit. Immunity elicited by direct vaccination or by maternal vaccination prolongs host survival but does not prevent infection, viral replication or transmission, thus extending the infectious periods of strains otherwise too lethal to persist. Our data show that anti-disease vaccines that do not prevent transmission can create conditions that promote the emergence of pathogen strains that cause more severe disease in unvaccinated hosts.  相似文献   

14.

Background

Understanding Mycobacterium tuberculosis (Mtb) transmission is essential to guide efficient tuberculosis control strategies. Traditional strain typing lacks sufficient discriminatory power to resolve large outbreaks. Here, we tested the potential of using next generation genome sequencing for identification of outbreak-related transmission chains.

Methods and Findings

During long-term (1997 to 2010) prospective population-based molecular epidemiological surveillance comprising a total of 2,301 patients, we identified a large outbreak caused by an Mtb strain of the Haarlem lineage. The main performance outcome measure of whole genome sequencing (WGS) analyses was the degree of correlation of the WGS analyses with contact tracing data and the spatio-temporal distribution of the outbreak cases. WGS analyses of the 86 isolates revealed 85 single nucleotide polymorphisms (SNPs), subdividing the outbreak into seven genome clusters (two to 24 isolates each), plus 36 unique SNP profiles. WGS results showed that the first outbreak isolates detected in 1997 were falsely clustered by classical genotyping. In 1998, one clone (termed “Hamburg clone”) started expanding, apparently independently from differences in the social environment of early cases. Genome-based clustering patterns were in better accordance with contact tracing data and the geographical distribution of the cases than clustering patterns based on classical genotyping. A maximum of three SNPs were identified in eight confirmed human-to-human transmission chains, involving 31 patients. We estimated the Mtb genome evolutionary rate at 0.4 mutations per genome per year. This rate suggests that Mtb grows in its natural host with a doubling time of approximately 22 h (400 generations per year). Based on the genome variation discovered, emergence of the Hamburg clone was dated back to a period between 1993 and 1997, hence shortly before the discovery of the outbreak through epidemiological surveillance.

Conclusions

Our findings suggest that WGS is superior to conventional genotyping for Mtb pathogen tracing and investigating micro-epidemics. WGS provides a measure of Mtb genome evolution over time in its natural host context. Please see later in the article for the Editors'' Summary  相似文献   

15.
16.
17.
Phenotypes for a gene deletion are often revealed only when the mutation is tested in a particular genetic background or environmental condition1,2. There are examples where many genes need to be deleted to unmask hidden gene functions3,4. Despite the potential for important discoveries, genetic interactions involving three or more genes are largely unexplored. Exhaustive searches of multi-mutant interactions would be impractical due to the sheer number of possible combinations of deletions. However, studies of selected sets of genes, such as sets of paralogs with a greater a priori chance of sharing a common function, would be informative.In the yeast Saccharomyces cerevisiae, gene knockout is accomplished by replacing a gene with a selectable marker via homologous recombination. Because the number of markers is limited, methods have been developed for removing and reusing the same marker5,6,7,8,9,10. However, sequentially engineering multiple mutations using these methods is time-consuming because the time required scales linearly with the number of deletions to be generated.Here we describe the Green Monster method for routinely engineering multiple deletions in yeast11. In this method, a green fluorescent protein (GFP) reporter integrated into deletions is used to quantitatively label strains according to the number of deletions contained in each strain (Figure 1). Repeated rounds of assortment of GFP-marked deletions via yeast mating and meiosis coupled with flow-cytometric enrichment of strains carrying more of these deletions lead to the accumulation of deletions in strains (Figure 2). Performing multiple processes in parallel, with each process incorporating one or more deletions per round, reduces the time required for strain construction.The first step is to prepare haploid single-mutants termed ''ProMonsters,'' each of which carries a GFP reporter in a deleted locus and one of the ''toolkit'' loci—either Green Monster GMToolkit-a or GMToolkit-α at the can1Δ locus (Figure 3). Using strains from the yeast deletion collection12, GFP-marked deletions can be conveniently generated by replacing the common KanMX4 cassette existing in these strains with a universal GFP-URA3 fragment. Each GMToolkit contains: either the a- or α-mating-type-specific haploid selection marker1 and exactly one of the two markers that, when both GMToolkits are present, collectively allow for selection of diploids.The second step is to carry out the sexual cycling through which deletion loci can be combined within a single cell by the random assortment and/or meiotic recombination that accompanies each cycle of mating and sporulation.  相似文献   

18.
The obligate intracellular bacterium Chlamydia elicits a great burden on global public health. C. trachomatis is the leading bacterial cause of sexually transmitted infection and also the primary cause of preventable blindness in the world. An essential determinant for successful infection of host cells by Chlamydia is the bacterium''s ability to manipulate host cell signaling from within a novel, vacuolar compartment called the inclusion. From within the inclusion, Chlamydia acquire nutrients required for their 2-3 day developmental growth, and they additionally secrete a panel of effector proteins onto the cytosolic face of the vacuole membrane and into the host cytosol. Gaps in our understanding of Chlamydia biology, however, present significant challenges for visualizing and analyzing this intracellular compartment. Recently, a reverse-imaging strategy for visualizing the inclusion using GFP expressing host cells was described. This approach rationally exploits the intrinsic impermeability of the inclusion membrane to large molecules such as GFP. In this work, we describe how GFP- or mCherry-expressing host cells are generated for subsequent visualization of chlamydial inclusions. Furthermore, this method is shown to effectively substitute for costly antibody-based enumeration methods, can be used in tandem with other fluorescent labels, such as GFP-expressing Chlamydia, and can be exploited to derive key quantitative data about inclusion membrane growth from a range of Chlamydia species and strains.  相似文献   

19.
Trypanosoma brucei''s mitochondrial genome, kinetoplast DNA (kDNA), is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei''s six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5′ to 3′ DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb), are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.  相似文献   

20.
Metabolic pathways used by Mycobacterium tuberculosis (Mtb) to establish and maintain infections are important for our understanding of pathogenesis and the development of new chemotherapies. To investigate the role of fructose-1,6-bisphosphate aldolase (FBA), we engineered an Mtb strain in which FBA levels were regulated by anhydrotetracycline. Depletion of FBA resulted in clearance of Mtb in both the acute and chronic phases of infection in vivo, and loss of viability in vitro when cultured on single carbon sources. Consistent with prior reports of Mtb''s ability to co-catabolize multiple carbon sources, this in vitro essentiality could be overcome when cultured on mixtures of glycolytic and gluconeogenic carbon sources, enabling generation of an fba knockout (Δfba). In vitro studies of Δfba however revealed that lack of FBA could only be compensated for by a specific balance of glucose and butyrate in which growth and metabolism of butyrate were determined by Mtb''s ability to co-catabolize glucose. These data thus not only evaluate FBA as a potential drug target in both replicating and persistent Mtb, but also expand our understanding of the multiplicity of in vitro conditions that define the essentiality of Mtb''s FBA in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号