首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Advances in fluorescent labeling of cells as measured by flow cytometry have allowed for quantitative studies of proliferating populations of cells. The investigations (Luzyanina et al. in J. Math. Biol. 54:57–89, 2007; J. Math. Biol., 2009; Theor. Biol. Med. Model. 4:1–26, 2007) contain a mathematical model with fluorescence intensity as a structure variable to describe the evolution in time of proliferating cells labeled by carboxyfluorescein succinimidyl ester (CFSE). Here, this model and several extensions/modifications are discussed. Suggestions for improvements are presented and analyzed with respect to statistical significance for better agreement between model solutions and experimental data. These investigations suggest that the new decay/label loss and time dependent effective proliferation and death rates do indeed provide improved fits of the model to data. Statistical models for the observed variability/noise in the data are discussed with implications for uncertainty quantification. The resulting new cell dynamics model should prove useful in proliferation assay tracking and modeling, with numerous applications in the biomedical sciences.  相似文献   

2.
蛇床子素是从伞形科植物蛇床中提取的一类具有生物活性的化合物。研究显示,蛇床子素对多种肿瘤细胞具有抑制作用,然而尚未有研究揭示其对胃癌N87细胞的抗肿瘤活性。本文研究了蛇床子素在体外和荷瘤小鼠体内对胃癌N87细胞的抗肿瘤效应,并进一步利用流式细胞术、TUNEL试验及Western印迹检测分析其对细胞周期及细胞凋亡的影响,以探索其作用机制。研究结果表明,蛇床子素有效地抑制了体外培养的N87细胞生长,并呈浓度依赖效应。本文还建立了N87的荷瘤小鼠模型。结果显示,无论是在低剂量(50 mg/kg)或高剂量(100 mg/kg)情况下,蛇床子素均显示了有效的肿瘤生长抑制效果。流式细胞术及Western印迹的结果表明,蛇床子素诱导N87细胞阻滞在G_2/M期。通过流式细胞术、TUNEL测试及Western印迹结果证明,蛇床子素通过激活胱天蛋白酶-3依赖的凋亡通路,最终导致了N87细胞凋亡的发生。综上所述,本研究显示,蛇床子素在胃癌N87细胞中通过促进细胞凋亡而发挥其抗肿瘤活性,这将为其应用于胃癌的临床治疗提供理论参考。  相似文献   

3.
4.
A nonisotopic, double fluorescence technique was developed to study myogenic satellite cell proliferation in posthatch turkey skeletal muscle. Labeled satellite cell nuclei were identified on enzymatically isolated myofiber segments using a mouse monoclonal antibody (anti-BrdU) followed by fluorescein-5-isothiocyanate (FITC) conjugated goat anti-mouse IgG secondary antibody. Myofiber nuclei (myonuclei + satellite cell nuclei) were counterstained with propidium iodide (PI). The myofiber segment length, myofiber segment diameter, and the number of PI and FITC labeled nuclei contained in each segment was determined using a Nikon fluorescence microscope, a SIT video camera and Image-1 software. Data collected by three different operators of the image analysis system revealed 5.0 ± 1.4 satellite cell nuclei per 1000 myofiber nuclei and 5284 ± 462 μm3 of cytoplasm surrounding each myofiber nucleus in the pectoralis thoracicus of 9-week-old tom turkeys. BrdU immunohistochemistry coupled with the new approach of PI staining of whole myofiber mounts is an effective combination to allow the use of an efficient semi-automated image analysis protocol.  相似文献   

5.
Intestinal homeostasis requires precise control of intestinal stem cell (ISC) proliferation. In Drosophila, this control declines with age largely due to chronic activation of stress signaling and associated chronic inflammatory conditions. An important contributor to this condition is the age-associated increase in endoplasmic reticulum (ER) stress. Here we show that the PKR-like ER kinase (PERK) integrates both cell-autonomous and non-autonomous ER stress stimuli to induce ISC proliferation. In addition to responding to cell-intrinsic ER stress, PERK is also specifically activated in ISCs by JAK/Stat signaling in response to ER stress in neighboring cells. The activation of PERK is required for homeostatic regeneration, as well as for acute regenerative responses, yet the chronic engagement of this response becomes deleterious in aging flies. Accordingly, knocking down PERK in ISCs is sufficient to promote intestinal homeostasis and extend lifespan. Our studies highlight the significance of the PERK branch of the unfolded protein response of the ER (UPRER) in intestinal homeostasis and provide a viable strategy to improve organismal health- and lifespan.  相似文献   

6.
Organisms have been exposed to the geomagnetic field (GMF) throughout evolutionary history. Exposure to the hypomagnetic field (HMF) by deep magnetic shielding has recently been suggested to have a negative effect on the structure and function of the central nervous system, particularly during early development. Although changes in cell growth and differentiation have been observed in the HMF, the effects of the HMF on cell cycle progression still remain unclear. Here we show that continuous HMF exposure significantly increases the proliferation of human neuroblastoma (SH-SY5Y) cells. The acceleration of proliferation results from a forward shift of the cell cycle in G1-phase. The G2/M-phase progression is not affected in the HMF. Our data is the first to demonstrate that the HMF can stimulate the proliferation of SH-SY5Y cells by promoting cell cycle progression in the G1-phase. This provides a novel way to study the mechanism of cells in response to changes of environmental magnetic field including the GMF.  相似文献   

7.
In this paper, we use the parameter retrieval method together with an analytical effective medium approach to design a well-performed invisible cloak, which is based on an empirical revised version of the reduced cloak. The designed cloak can be implemented by silver nanowires with elliptical cross sections embedded in a polymethyl methacrylate host. This cloak is numerically proved to be robust for both the inner hidden object as well as incoming detecting waves and is much simpler, thus easier to manufacture when compared with the earlier one proposed by Cai et al. (Nat Photon 1: 224, 2007).  相似文献   

8.
目的:用CHO细胞表达人白细胞介素7(IL-7),并验证其促细胞增殖功能。方法:构建表达质粒pc DNA5/FRT-IL-7,用Lipo2000将辅助质粒p OG44和表达质粒共转染Flp-In-CHO细胞,潮霉素B筛选并单克隆化稳定表达目的蛋白的细胞;通过Western印迹、ELISA方法验证上清中的目的蛋白,并对其定量;用流式细胞仪检测该蛋白促外周血单核细胞增殖的能力。结果:获得了2株稳定表达IL-7的细胞,IL-7的表达量均为3 mg/(L·d);流式细胞术检测表明,所表达的IL-7的促外周血单核细胞增殖能力强于RD原核系统表达的IL-7。结论:获得了稳定表达人IL-7的CHO细胞系,且表达的蛋白具有促外周血单核细胞增殖的功能。  相似文献   

9.
10.
《Free radical research》2013,47(3-6):149-159
Antioxidants such as mannitol, butylated hydroxytoluene and a-tocopherol enhance the growth of pol-yoma virus transformed and non-transformed BHK-21 cells. In the case of mannitol this is observed even in the absence of added calf serum. In part these effects may operate to protect cellular growth control mechanisms. On the other hand oxidants such as H2O2 and t-butyl hydroperoxide can inhibit growth and overall cellular protein synthesis, through mechanisms that are likely to involve radicals. In the case of H2O2, the inhibitory effects can nevertheless be reduced by 'prestressing' the cells with mild heat or with H2O2 itself.

Paradoxically very low concentrations (10?8 M) of H2 02 or t-butyl hydroperoxide can actually stimulate cell growth, even in the absence of serum. These stimulatory effects however do not appear to involve radicals as they are enhanced by inclusion of mannitol or DMSO in the medium.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Galectin-3, a β-galactoside-binding protein, has been shown to be involved in multiple biological processes through interaction with its complementary glycoconjugates. Here we provide the first evidence of galectin-3 as a mitogen. Incubation of quiescent cultures of normal human lung fibroblast IMR-90 cells with recombinant galectin-3 (rgalectin-3) stimulated DNA synthesis as well as cell proliferation in a dose-dependent manner. This mitogenic activity was dependent on the lectin property of galectin-3, as it could be significantly inhibited by lactose, a disaccharide competitive for carbohydrate-binding by galectin-3. Chemical cross-linking and affinity-purification experiments identified binding of rgalectin-3 to cell surface glycoproteins, which were not recognized by antibodies directed against lysosome-associated membrane proteins (LAMPs), putative cellular ligands for galectin-3. Moreover, pulse–chase analysis revealed no secretion of galectin-3 by IMR-90 cells. These results indicate that galectin-3 is a mitogen capable of stimulating fibroblast cell proliferation in a paracrine fashion through interaction with cell surface glycoconjugates different from LAMPs and suggest a possible involvement of galectin-3 in tissue remodeling.  相似文献   

18.
19.
利用基因工程技术高效制备具有促进角膜上皮细胞增殖功能的垂体腺苷酸环化酶激活肽(PACAP 27)衍生多肽RP2,在细胞水平初步研究其生物学作用,为其用于角膜损伤治疗提供实验基础。采用基因重组技术表达重组肽RP2,经Chitin-Beads和HPLC纯化、SDS-PAGE和质谱鉴定后,研究其对小鼠角膜上皮细胞增殖的影响。实验结果表明:利用基因重组技术制备的PACAP 27衍生多肽RP2的分子量为3.3 k Da,纯度达96%;分别用重组肽RP2、PACAP 27及PBS作用于小鼠角膜上皮细胞,处理24 h及48 h时,RP2处理组角膜上皮细胞增殖率分别为(49.6±3.1)%、(93.0±1.7)%,PACAP 27处理组细胞增殖率分别为(29.0±2.4)%、(78.8±2.6)%,PBS对照组细胞增殖率为(20.2±1.1)%,(40.9±3.3)%。利用建立的重组多肽制备技术条件,可实现PACAP衍生多肽RP2高效制备,制备的RP2可有效促进角膜上皮细胞的增殖,从而有望成为一种新型角膜损伤治疗候选药物。  相似文献   

20.
Ion Channels in Cell Proliferation and Apoptotic Cell Death   总被引:14,自引:0,他引:14  
Cell proliferation and apoptosis are paralleled by altered regulation of ion channels that play an active part in the signaling of those fundamental cellular mechanisms. Cell proliferation must - at some time point - increase cell volume and apoptosis is typically paralleled by cell shrinkage. Cell volume changes require the participation of ion transport across the cell membrane, including appropriate activity of Cl and K+ channels. Besides regulating cytosolic Cl activity, osmolyte flux and, thus, cell volume, most Cl channels allow HCO3 exit and cytosolic acidification, which inhibits cell proliferation and favors apoptosis. K+ exit through K+ channels may decrease intracellular K+ concentration, which in turn favors apoptotic cell death. K+ channel activity further maintains the cell membrane potential, a critical determinant of Ca2+ entry through Ca2+ channels. Cytosolic Ca2+ may trigger mechanisms required for cell proliferation and stimulate enzymes executing apoptosis. The switch between cell proliferation and apoptosis apparently depends on the magnitude and temporal organization of Ca2+ entry and on the functional state of the cell. Due to complex interaction with other signaling pathways, a given ion channel may play a dual role in both cell proliferation and apoptosis. Thus, specific ion channel blockers may abrogate both fundamental cellular mechanisms, depending on cell type, regulatory environment and condition of the cell. Clearly, considerable further experimental effort is required to fully understand the complex interplay between ion channels, cell proliferation and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号