首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
《Epigenetics》2013,8(9):1228-1237
Changes to the DNA methylome have been described in patients with rheumatoid arthritis (RA). In previous work, we reported genome-wide methylation differences in T-lymphocyte and B-lymphocyte populations from healthy individuals. Now, using HumanMethylation450 BeadChips to interrogate genome-wide DNA methylation, we have determined disease-associated methylation changes in blood-derived T- and B-lymphocyte populations from 12 female patients with seropositive established RA, relative to 12 matched healthy individuals. Array data were analyzed using NIMBL software and bisulfite pyrosequencing was used to validate array candidates. Genome-wide DNA methylation, determined by analysis of LINE-1 sequences, revealed higher methylation in B-lymphocytes compared with T-lymphocytes (P ≤ 0.01), which is consistent with our findings in healthy individuals. Moreover, loci-specific methylation differences that distinguished T-lymphocytes from B-lymphocytes in healthy individuals were also apparent in RA patients. However, disease-associated methylation differences were also identified in RA. In these cases, we identified 509 and 252 CpGs in RA-derived T- and B-lymphocytes, respectively, that showed significant changes in methylation compared with their cognate healthy counterparts. Moreover, this included a restricted set of 32 CpGs in T-lymphocytes and 20 CpGs in B-lymphocytes (representing 15 and 10 genes, respectively, and including two, MGMT and CCS, that were common to both cell types) that displayed more substantial changes in methylation. These changes, apparent as hyper- or hypo-methylation, were independently confirmed by pyrosequencing analysis. Validation by pyrosequencing also revealed additional sites in some candidate genes that also displayed altered methylation in RA. In this first study of genome-wide DNA methylation in individual T- and B-lymphocyte populations in RA patients, we report disease-associated methylation changes that are distinct to each cell type and which support a role for discrete epigenetic regulation in this disease.  相似文献   

2.
《Epigenetics》2013,8(11):1188-1197
Multiple reports now describe changes to the DNA methylome in rheumatoid arthritis and in many cases have analyzed methylation in mixed cell populations from whole blood. However, these approaches may preclude the identification of cell type-specific methylation, which may subsequently bias identification of disease-specific changes. To address this possibility, we conducted genome-wide DNA methylation profiling using HumanMethylation450 BeadChips to identify differences within matched pairs of T-lymphocytes and B-lymphocytes isolated from the peripheral blood of 10 healthy females. Array data were processed and differential methylation identified using NIMBL software. Validation of array data was performed by bisulfite pyrosequencing. Genome-wide DNA methylation was initially determined by analysis of LINE-1 sequences and was higher in B-lymphocytes than matched T-lymphocytes (69.8% vs. 65.2%, P ≤ 0.01). Pairwise analysis identified 679 CpGs, representing 250 genes, which were differentially methylated between T-lymphocytes and B-lymphocytes. The majority of sites (76.6%) were hypermethylated in B-lymphocytes. Pyrosequencing of selected candidates confirmed the array data in all cases. Hierarchical clustering revealed perfect segregation of samples into two distinct clusters based on cell type. Differentially methylated genes showed enrichment for biological functions/pathways associated with leukocytes and T-lymphocytes. Our work for the first time shows that T-lymphocytes and B-lymphocytes possess intrinsic differences in DNA methylation within a restricted set of functionally related genes. These data provide a foundation for investigating DNA methylation in diseases in which these cell types play important and distinct roles.  相似文献   

3.
Formalin fixation has been the standard method for conservation of clinical specimens for decades. However, a major drawback is the high degradation of nucleic acids, which complicates its use in genome-wide analyses. Unbiased identification of biomarkers, however, requires genome-wide studies, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap-freezing is the PAXgene Tissue System, developed for simultaneous preservation of morphology, proteins, and nucleic acids. In the current study, we compared the performance of DNA from either PAXgene or formalin-fixed tissues to snap-frozen material for genome-wide DNA methylation analysis using the Illumina 450K BeadChip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better compared with restored FFPE DNA in genome-wide DNA methylation analysis. In addition, DNA from PAXgene tissue can be directly used on the array without prior restoration, rendering the analytical process significantly more time- and cost-effective.  相似文献   

4.
Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform (http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development.  相似文献   

5.
Several recent reports have described associations between gestational diabetes (GDM) and changes to the epigenomic landscape where the DNA samples were derived from either cord or placental sources. We employed genome-wide 450K array analysis to determine changes to the epigenome in a unique cohort of maternal blood DNA from 11 pregnant women prior to GDM development relative to matched controls. Hierarchical clustering segregated the samples into 2 distinct clusters comprising GDM and healthy pregnancies. Screening identified 100 CpGs with a mean β-value difference of ≥0.2 between cases and controls. Using stringent criteria, 5 CpGs (within COPS8, PIK3R5, HAAO, CCDC124, and C5orf34 genes) demonstrated potentials to be clinical biomarkers as revealed by differential methylation in 8 of 11 women who developed GDM relative to matched controls. We identified, for the first time, maternal methylation changes prior to the onset of GDM that may prove useful as biomarkers for early therapeutic intervention.  相似文献   

6.
7.
Genomic imprinting is the process of epigenetic modification whereby genes are expressed in a parent-of-origin dependent manner; it plays an important role in normal growth and development. Parthenogenetic embryos contain only the maternal genome. Parthenogenetic embryonic stem cells could be useful for studying imprinted genes. In humans, mature cystic ovarian teratomas originate from parthenogenetic activation of oocytes; they are composed of highly differentiated mature tissues containing all three germ layers. To establish human parthenogenetic induced pluripotent stem cell lines (PgHiPSCs), we generated parthenogenetic fibroblasts from ovarian teratoma tissues. We compared global DNA methylation status of PgHiPSCs with that of biparental human induced pluripotent stem cells by using Illumina Infinium HumanMethylation450 BeadChip array. This analysis identified novel single imprinted CpG sites. We further tested DNA methylation patterns of two of these sites using bisulfite sequencing and described novel candidate imprinted CpG sites. These results confirm that PgHiPSCs are a powerful tool for identifying imprinted genes and investigating their roles in human development and diseases.  相似文献   

8.
9.
10.

Background

Age-related physiological, biochemical and functional changes in mammalian skeletal muscle have been shown to begin at the mid-point of the lifespan. However, the underlying changes in DNA methylation that occur during this turning point of the muscle aging process have not been clarified. To explore age-related genomic methylation changes in skeletal muscle, we employed young (0.5 years old) and middle-aged (7 years old) pigs as models to survey genome-wide DNA methylation in the longissimus dorsi muscle using a methylated DNA immunoprecipitation sequencing approach.

Results

We observed a tendency toward a global loss of DNA methylation in the gene-body region of the skeletal muscle of the middle-aged pigs compared with the young group. We determined the genome-wide gene expression pattern in the longissimus dorsi muscle using microarray analysis and performed a correlation analysis using DMR (differentially methylated region)-mRNA pairs, and we found a significant negative correlation between the changes in methylation levels within gene bodies and gene expression. Furthermore, we identified numerous genes that show age-related methylation changes that are potentially involved in the aging process. The methylation status of these genes was confirmed using bisulfite sequencing PCR. The genes that exhibited a hypomethylated gene body in middle-aged pigs were over-represented in various proteolysis and protein catabolic processes, suggesting an important role for these genes in age-related muscle atrophy. In addition, genes associated with tumorigenesis exhibited aged-related differences in methylation and expression levels, suggesting an increased risk of disease associated with increased age.

Conclusions

This study provides a comprehensive analysis of genome-wide DNA methylation patterns in aging pig skeletal muscle. Our findings will serve as a valuable resource in aging studies, promoting the pig as a model organism for human aging research and accelerating the development of comparative animal models in aging research.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-653) contains supplementary material, which is available to authorized users.  相似文献   

11.
Differentiation of embryonic stem (ES) cells into embryoid bodies (EBs) provides an in vitro system for the study of early lineage determination during mammalian development. We have previously reported that there are 247 CpG islands that potentially have tissue-dependent and differentially methylated regions (T-DMRs). This provided evidence that the formation of DNA methylation patterns at CpG islands is a crucial epigenetic event underlying mammalian development. Here we present an analysis by the restriction landmark genomic scanning (RLGS) using NotI as a landmark enzyme of the genome-wide methylation status of CpG islands of ES cells and EBs and of teratomas produced from ES cells. These results are considered in relation to the methylation status of CpG islands of genomic DNA from normal fetus (10.5 dpc) and adult tissues. We have prepared a DNA methylation panel that consists of 259 T-DMRs and includes novel T-DMRs that are distinctly methylated or unmethylated in the teratomas. The DNA methylation pattern was complex and differed for the ES cells, EBs, and teratomas, providing evidence that differentiation of cells involves both de novo DNA methylation as well as demethylation. Comparison of the numbers of T-DMRs, that were differentially methylated or unmethylated among the cells and tissue types studied, revealed that the teratomas were the most epigenetically different from ES cells. Thus, analysis of the DNA methylation profiles prepared in this study provides new insights into the differentiation of ES cells and development of fetus, EB, teratoma, and somatic tissues.  相似文献   

12.
13.
14.
Increasing evidence suggested DNA methylation may serve as potential prognostic biomarkers; however, few related DNA methylation signatures have been established for prediction of lung cancer prognosis. We aimed at developing DNA methylation signature to improve prognosis prediction of stage I lung adenocarcinoma (LUAD). A total of 268 stage I LUAD patients from the Cancer Genome Atlas (TCGA) database were included. These patients were separated into training and internal validation datasets. GSE39279 was used as an external validation set. A 13‐DNA methylation signature was identified to be crucially relevant to the relapse‐free survival (RFS) of patients with stage I LUAD by the univariate Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis and multivariate Cox proportional hazard analysis in the training dataset. The Kaplan‐Meier analysis indicated that the 13‐DNA methylation signature could significantly distinguish the high‐ and low‐risk patients in entire TCGA dataset, internal validation and external validation datasets. The receiver operating characteristic (ROC) analysis further verified that the 13‐DNA methylation signature had a better value to predict the RFS of stage I LUAD patients in internal validation, external validation and entire TCGA datasets. In addition, a nomogram combining methylomic risk scores with other clinicopathological factors was performed and the result suggested the good predictive value of the nomogram. In conclusion, we successfully built a DNA methylation‐associated nomogram, enabling prediction of the RFS of patients with stage I LUAD.  相似文献   

15.
Changes in the level of cytosine methylation were assessed by HPLC in mechanically stressed Bryonia dioica . Rubbing young internodes. which results in growth inhibition and ethylene production, induced a rapid and transient decrease of cytosine methylation in DNA. The level of cytosine methylation was about 25% in young internodes and dropped to nearly 0% in less than 1 h before increasing to the normal level within 3 h. A decreasing gradient of DNA methylation occurred naturally along the plant, from the apex to the base. The pool of S-adenosylmethionine was also measured in order to establish a possible relationship between ethylene metabolism and DNA methylation. The role of DNA methylation in gene regulation is discussed and different mechanisms for methylation are considered.  相似文献   

16.
Mercury and arsenic are known developmental toxicants. Prenatal exposures are associated with adverse childhood health outcomes that could be in part mediated by epigenetic alterations that may also contribute to altered immune profiles. In this study, we examined the association between prenatal mercury exposure on both DNA methylation and white blood cell composition of cord blood, and evaluated the interaction with prenatal arsenic exposure. A total of 138 mother-infant pairs with postpartum maternal toenail mercury, prenatal urinary arsenic concentrations, and newborn cord blood were assessed using the Illumina Infinium Methylation450 array. White blood cell composition was inferred from DNA methylation measurements. A doubling in toenail mercury concentration was associated with a 2.5% decrease (95% CI: 5.0%, 1.0%) in the estimated monocyte proportion. An increase of 3.5% (95% CI: 1.0, 7.0) in B-cell proportion was observed for females only. Among the top 100 CpGs associated with toenail mercury levels (ranked on P-value), there was a significant enrichment of loci located in North shore regions of CpG islands (P = 0.049), and the majority of these loci were hypermethylated (85%). Among the top 100 CpGs for the interaction between arsenic and mercury, there was a greater than expected proportion of loci located in CpG islands (P = 0.045) and in South shore regions (P = 0.009) and all of these loci were hypermethylated. This work supports the hypothesis that mercury may be contributing to epigenetic variability and immune cell proportion changes, and suggests that in utero exposure to mercury and arsenic, even at low levels, may interact to impact the epigenome.  相似文献   

17.
18.
Oral Squamous Cell Carcinoma (OSCC) is a serious and one of the most common and highly aggressive malignancies. Epigenetic factors such as DNA methylation have been known to be implicated in a number of cancer etiologies. The main objective of this study was to investigate physiognomies of Promoter DNA methylation patterns associated with oral cancer epigenome with special reference to the ethnic population of Meghalaya, North East India. The present study identifies 27,205 CpG sites and 3811 regions that are differentially methylated in oral cancer when compared to matched normal. 45 genes were found to be differentially methylated within the promoter region, of which 38 were hypermethylated and 7 hypomethylated. 14 of the hypermethylated genes were found to be similar to that of the TCGA-HNSCC study some of which are TSGs and few novel genes which may serve as candidate methylation biomarkers for OSCC in this poorly characterized ethnic group.  相似文献   

19.
CG methylation (mCG) is essential for preserving genome stability in mammals, but this link remains obscure in plants. OsMET1‐2, a major rice DNA methyltransferase, plays critical roles in maintaining mCG in rice. Null mutation of OsMET1‐2 causes massive CG hypomethylation, rendering the mutant suitable to address the role of mCG in maintaining genome integrity in plants. Here, we analyzed mCG dynamics and genome stability in tissue cultures of OsMET1‐2 homozygous (?/?) and heterozygous (+/?) mutants, and isogenic wild‐type (WT). We found mCG levels in cultures of ?/? were substantially lower than in those of WT and +/?, as expected. Unexpectedly, mCG levels in 1‐ and 3‐year cultures of ?/? were 77.6% and 48.7% higher, respectively, than in shoot, from which the cultures were initiated, suggesting substantial regain of mCG in ?/? cultures, which contrasts to the general trend of mCG loss in all WT plant tissue cultures hitherto studied. Transpositional burst of diverse transposable elements (TEs) occurred only in ?/? cultures, although no elevation of genome‐wide mutation rate in the form of single nucleotide polymorphisms was detected. Altogether, our results establish an essential role of mCG in retaining TE immobility and hence genome stability in rice and likely in plants in general.  相似文献   

20.
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available.In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells.Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号