共查询到20条相似文献,搜索用时 0 毫秒
1.
Christian Kleinhans Karl W. Kafitz Christine R. Rose 《Journal of visualized experiments : JoVE》2014,(92)
Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular sodium signals induced by focal receptor activation in intact brain tissue. 相似文献
2.
Sarah H. Shahmoradian Mauricio R. Galiano Chengbiao Wu Shurui Chen Matthew N. Rasband William C. Mobley Wah Chiu 《Journal of visualized experiments : JoVE》2014,(84)
Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders. 相似文献
3.
Ryan W. O'Meara Scott D. Ryan Holly Colognato Rashmi Kothary 《Journal of visualized experiments : JoVE》2011,(54)
Identifying the molecular mechanisms underlying OL development is not only critical to furthering our knowledge of OL biology, but also has implications for understanding the pathogenesis of demyelinating diseases such as Multiple Sclerosis (MS). Cellular development is commonly studied with primary cell culture models. Primary cell culture facilitates the evaluation of a given cell type by providing a controlled environment, free of the extraneous variables that are present in vivo. While OL cultures derived from rats have provided a vast amount of insight into OL biology, similar efforts at establishing OL cultures from mice has been met with major obstacles. Developing methods to culture murine primary OLs is imperative in order to take advantage of the available transgenic mouse lines. Multiple methods for extraction of OPCs from rodent tissue have been described, ranging from neurosphere derivation, differential adhesion purification and immunopurification 1-3. While many methods offer success, most require extensive culture times and/or costly equipment/reagents. To circumvent this, purifying OPCs from murine tissue with an adaptation of the method originally described by McCarthy & de Vellis 2 is preferred. This method involves physically separating OPCs from a mixed glial culture derived from neonatal rodent cortices. The result is a purified OPC population that can be differentiated into an OL-enriched culture. This approach is appealing due to its relatively short culture time and the unnecessary requirement for growth factors or immunopanning antibodies. While exploring the mechanisms of OL development in a purified culture is informative, it does not provide the most physiologically relevant environment for assessing myelin sheath formation. Co-culturing OLs with neurons would lend insight into the molecular underpinnings regulating OL-mediated myelination of axons. For many OL/neuron co-culture studies, dorsal root ganglion neurons (DRGNs) have proven to be the neuron type of choice. They are ideal for co-culture with OLs due to their ease of extraction, minimal amount of contaminating cells, and formation of dense neurite beds. While studies using rat/mouse myelinating xenocultures have been published 4-6, a method for the derivation of such OL/DRGN myelinating co-cultures from post-natal murine tissue has not been described. Here we present detailed methods on how to effectively produce such cultures, along with examples of expected results. These methods are useful for addressing questions relevant to OL development/myelinating function, and are useful tools in the field of neuroscience. 相似文献
4.
Culturing primary hippocampal neurons in vitro facilitates mechanistic interrogation of many aspects of neuronal development. Dissociated embryonic hippocampal neurons can often grow successfully on glass coverslips at high density under serum-free conditions, but low density cultures typically require a supply of trophic factors by co-culturing them with a glia feeder layer, preparation of which can be time-consuming and laborious. In addition, the presence of glia may confound interpretation of results and preclude studies on neuron-specific mechanisms. Here, a simplified method is presented for ultra-low density (~2,000 neurons/cm2), long-term (>3 months) primary hippocampal neuron culture that is under serum free conditions and without glia cell support. Low density neurons are grown on poly-D-lysine coated coverslips, and flipped on high density neurons grown in a 24-well plate. Instead of using paraffin dots to create a space between the two neuronal layers, the experimenters can simply etch the plastic bottom of the well, on which the high density neurons reside, to create a microspace conducive to low density neuron growth. The co-culture can be easily maintained for >3 months without significant loss of low density neurons, thus facilitating the morphological and physiological study of these neurons. To illustrate this successful culture condition, data are provided to show profuse synapse formation in low density cells after prolonged culture. This co-culture system also facilitates the survival of sparse individual neurons grown in islands of poly-D-lysine substrates and thus the formation of autaptic connections. 相似文献
5.
The shape of the dendritic arbor determines the total synaptic input a neuron can receive 1-3, and influences the types and distribution of these inputs 4-6. Altered patterns of dendritic growth and plasticity are associated with impaired neurobehavioral function in experimental models 7, and are thought to contribute to clinical symptoms observed in both neurodevelopmental disorders 8-10 and neurodegenerative diseases 11-13. Such observations underscore the functional importance of precisely regulating dendritic morphology, and suggest that identifying mechanisms that control dendritic growth will not only advance understanding of how neuronal connectivity is regulated during normal development, but may also provide insight on novel therapeutic strategies for diverse neurological diseases.Mechanistic studies of dendritic growth would be greatly facilitated by the availability of a model system that allows neurons to be experimentally switched from a state in which they do not extend dendrites to one in which they elaborate a dendritic arbor comparable to that of their in vivo counterparts. Primary cultures of sympathetic neurons dissociated from the superior cervical ganglia (SCG) of perinatal rodents provide such a model. When cultured in defined medium in the absence of serum and ganglionic glial cells, sympathetic neurons extend a single process which is axonal, and this unipolar state persists for weeks to months in culture 14,15. However, the addition of either bone morphogenetic protein-7 (BMP-7) 16,17 or Matrigel 18 to the culture medium triggers these neurons to extend multiple processes that meet the morphologic, biochemical and functional criteria for dendrites. Sympathetic neurons dissociated from the SCG of perinatal rodents and grown under defined conditions are a homogenous population of neurons 19 that respond uniformly to the dendrite-promoting activity of Matrigel, BMP-7 and other BMPs of the decapentaplegic (dpp) and 60A subfamilies 17,18,20,21. Importantly, Matrigel- and BMP-induced dendrite formation occurs in the absence of changes in cell survival or axonal growth 17,18.Here, we describe how to set up dissociated cultures of sympathetic neurons derived from the SCG of perinatal rats so that they are responsive to the selective dendrite-promoting activity of Matrigel or BMPs. 相似文献
6.
Multiple signaling pathways are involved in AMPAR trafficking to synapses during synaptic plasticity and learning. The mechanisms for how these pathways are coordinated in parallel but maintain their functional specificity involves subcellular compartmentalization of kinase function by scaffolding proteins, but how this is accomplished is not well understood. Here, we focused on characterizing the molecular machinery that functions in the sequential synaptic delivery of GluA1- and GluA4-containing AMPARs using an in vitro model of eyeblink classical conditioning. We show that conditioning induces the interaction of selective protein complexes with the key structural protein SAP97, which tightly regulates the synaptic delivery of GluA1 and GluA4 AMPAR subunits. The results demonstrate that in the early stages of conditioning the initial activation of PKA stimulates the formation of a SAP97-AKAP/PKA-GluA1 protein complex leading to synaptic delivery of GluA1-containing AMPARs through a SAP97-PSD95 interaction. This is followed shortly thereafter by generation of a SAP97-KSR1/PKC-GluA4 complex for GluA4 AMPAR subunit delivery again through a SAP97-PSD95 interaction. These data suggest that SAP97 forms the molecular backbone of a protein scaffold critical for delivery of AMPARs to the PSD during conditioning. Together, the findings reveal a cooperative interaction of multiple scaffolding proteins for appropriately timed delivery of subunit-specific AMPARs to synapses and support a sequential two-stage model of AMPAR synaptic delivery during classical conditioning. 相似文献
7.
Thomas Bruns Sarah Schickinger Herbert Schneckenburger 《Journal of visualized experiments : JoVE》2014,(90)
A module for light sheet or single plane illumination microscopy (SPIM) is described which is easily adapted to an inverted wide-field microscope and optimized for 3-dimensional cell cultures, e.g., multi-cellular tumor spheroids (MCTS). The SPIM excitation module shapes and deflects the light such that the sample is illuminated by a light sheet perpendicular to the detection path of the microscope. The system is characterized by use of a rectangular capillary for holding (and in an advanced version also by a micro-capillary approach for rotating) the samples, by synchronous adjustment of the illuminating light sheet and the objective lens used for fluorescence detection as well as by adaptation of a microfluidic system for application of fluorescent dyes, pharmaceutical agents or drugs in small quantities. A protocol for working with this system is given, and some technical details are reported. Representative results include (1) measurements of the uptake of a cytostatic drug (doxorubicin) and its partial conversion to a degradation product, (2) redox measurements by use of a genetically encoded glutathione sensor upon addition of an oxidizing agent, and (3) initiation and labeling of cell necrosis upon inhibition of the mitochondrial respiratory chain. Differences and advantages of the present SPIM module in comparison with existing systems are discussed. 相似文献
8.
The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain''s global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. 相似文献
9.
SGs can be visualized in cells by immunostaining of specific protein components or polyA+ mRNAs. SGs are highly dynamic and the study of their assembly and fate is important to understand the cellular response to stress. The deficiency in key factors of SGs like G3BP (RasGAP SH3 domain Binding Protein) leads to developmental defects in mice and alterations of the Central Nervous System. To study the dynamics of SGs in cells from an organism, one can culture primary cells and follow the localization of a transfected tagged component of SGs. We describe time-lapse experiment to observe G3BP1-containing SGs in Mouse Embryonic Fibroblasts (MEFs). This technique can also be used to study G3BP-containing SGs in live neurons, which is crucial as it was recently shown that these SGs are formed at the onset of neurodegenerative diseases like Alzheimer''s disease. This approach can be adapted to any other cellular body and granule protein component, and performed with transgenic animals, allowing the live study of granules dynamics for example in the absence of a specific factor of these granules. 相似文献
10.
Knyazhitsky M Moas E Shaginov E Luria A Braiman A 《The Journal of biological chemistry》2012,287(23):19725-19735
Robust elevation of the cytosolic calcium concentration is a crucial early step for T cell activation triggered by the T cell antigen receptor. Vav1 is a proto-oncogene expressed in hematopoietic cells that is indispensable for transducing the calcium-mobilizing signal. Following T cell receptor stimulation, Vav1 facilitates formation of signaling microclusters through multiple interactions with other proteins participating in the signaling cascade. Truncation of the N terminus of Vav1 produces its oncogenic version, which is unable to support normal calcium flux following T cell activation. We show here that truncation of the N-terminal region of Vav1 alters the fine structure of protein complexes in the signaling clusters, affecting the interaction of Vav1 with phospholipase Cγ1 (PLCγ1). This alteration is accompanied by a decrease in PLCγ1 phosphorylation and inhibition of inositol 1,4,5-trisphosphate production. We suggest that the structural integrity of the N-terminal region of Vav1 is important for the proper formation of the Vav1-associated signaling complexes. The oncogenic truncation of this region elicits conformational changes that interfere with the Vav1-mediated activation of PLCγ1 and that inhibit calcium mobilization. 相似文献
11.
Keri L. Hildick Inmaculada M. Gonz��lez-Gonz��lez Fr��d��ric Jaskolski Jeremy. M. Henley 《Journal of visualized experiments : JoVE》2012,(60)
Membrane proteins such as receptors and ion channels undergo active trafficking in neurons, which are highly polarised and morphologically complex. This directed trafficking is of fundamental importance to deliver, maintain or remove synaptic proteins.Super-ecliptic pHluorin (SEP) is a pH-sensitive derivative of eGFP that has been extensively used for live cell imaging of plasma membrane proteins1-2. At low pH, protonation of SEP decreases photon absorption and eliminates fluorescence emission. As most intracellular trafficking events occur in compartments with low pH, where SEP fluorescence is eclipsed, the fluorescence signal from SEP-tagged proteins is predominantly from the plasma membrane where the SEP is exposed to a neutral pH extracellular environment. When illuminated at high intensity SEP, like every fluorescent dye, is irreversibly photodamaged (photobleached)3-5. Importantly, because low pH quenches photon absorption, only surface expressed SEP can be photobleached whereas intracellular SEP is unaffected by the high intensity illumination6-10. FRAP (fluorescence recovery after photobleaching) of SEP-tagged proteins is a convenient and powerful technique for assessing protein dynamics at the plasma membrane. When fluorescently tagged proteins are photobleached in a region of interest (ROI) the recovery in fluorescence occurs due to the movement of unbleached SEP-tagged proteins into the bleached region. This can occur via lateral diffusion and/or from exocytosis of non-photobleached receptors supplied either by de novo synthesis or recycling (see Fig. 1). The fraction of immobile and mobile protein can be determined and the mobility and kinetics of the diffusible fraction can be interrogated under basal and stimulated conditions such as agonist application or neuronal activation stimuli such as NMDA or KCl application8,10. We describe photobleaching techniques designed to selectively visualize the recovery of fluorescence attributable to exocytosis. Briefly, an ROI is photobleached once as with standard FRAP protocols, followed, after a brief recovery, by repetitive bleaching of the flanking regions. This ''FRAP-FLIP'' protocol, developed in our lab, has been used to characterize AMPA receptor trafficking at dendritic spines10, and is applicable to a wide range of trafficking studies to evaluate the intracellular trafficking and exocytosis. 相似文献
12.
Amanda Souza Câmara;Ivona Kubalová;Veit Schubert; 《The Plant journal : for cell and molecular biology》2024,118(5):1284-1300
Efficient chromatin condensation is required to transport chromosomes during mitosis and meiosis, forming daughter cells. While it is well accepted that these processes follow fundamental rules, there has been a controversial debate for more than 140 years on whether the higher-order chromatin organization in chromosomes is evolutionarily conserved. Here, we summarize historical and recent investigations based on classical and modern methods. In particular, classical light microscopy observations based on living, fixed, and treated chromosomes covering a wide range of plant and animal species, and even in single-cell eukaryotes suggest that the chromatids of large chromosomes are formed by a coiled chromatin thread, named the chromonema. More recently, these findings were confirmed by electron and super-resolution microscopy, oligo-FISH, molecular interaction data, and polymer simulation. Altogether, we describe common and divergent features of coiled chromonemata in different species. We hypothesize that chromonema coiling in large chromosomes is a fundamental feature established early during the evolution of eukaryotes to handle increasing genome sizes. 相似文献
13.
Anke Teichmann Arthur Gibert André Lampe Paul Grzesik Claudia Rutz Jens Furkert Jan Schmoranzer Gerd Krause Burkhard Wiesner Ralf Schülein 《The Journal of biological chemistry》2014,289(35):24250-24262
G protein-coupled receptors (GPCRs) represent the most important drug targets. Although the smallest functional unit of a GPCR is a monomer, it became clear in the past decades that the vast majority of the receptors form dimers. Only very recently, however, data were presented that some receptors may in fact be expressed as a mixture of monomers and dimers and that the interaction of the receptor protomers is dynamic. To date, equilibrium measurements were restricted to the plasma membrane due to experimental limitations. We have addressed the question as to where this equilibrium is established for the corticotropin-releasing factor receptor type 1. By developing a novel approach to analyze single molecule fluorescence cross-correlation spectroscopy data for intracellular membrane compartments, we show that the corticotropin-releasing factor receptor type 1 has a specific monomer/dimer equilibrium that is already established in the endoplasmic reticulum (ER). It remains constant at the plasma membrane even following receptor activation. Moreover, we demonstrate for seven additional GPCRs that they are expressed in specific but substantially different monomer/dimer ratios. Although it is well known that proteins may dimerize in the ER in principle, our data show that the ER is also able to establish the specific monomer/dimer ratios of GPCRs, which sheds new light on the functions of this compartment. 相似文献
14.
Luca F. Pisterzi David B. Jansma John Georgiou Michael J. Woodside Judy Tai-Chieh Chou Stéphane Angers Valeric? Raicu James W. Wells 《The Journal of biological chemistry》2010,285(22):16723-16738
Fluorescence resonance energy transfer (FRET), measured by fluorescence intensity-based microscopy and fluorescence lifetime imaging, has been used to estimate the size of oligomers formed by the M2 muscarinic cholinergic receptor. The approach is based on the relationship between the apparent FRET efficiency within an oligomer of specified size (n) and the pairwise FRET efficiency between a single donor and a single acceptor (E). The M2 receptor was fused at the N terminus to enhanced green or yellow fluorescent protein and expressed in Chinese hamster ovary cells. Emission spectra were analyzed by spectral deconvolution, and apparent efficiencies were estimated by donor-dequenching and acceptor-sensitized emission at different ratios of enhanced yellow fluorescent protein-M2 receptor to enhanced green fluorescent protein-M2 receptor. The data were interpreted in terms of a model that considers all combinations of donor and acceptor within a specified oligomer to obtain fitted values of E as follows: n = 2, 0.495 ± 0.019; n = 4, 0.202 ± 0.010; n = 6, 0.128 ± 0.006; n = 8, 0.093 ± 0.005. The pairwise FRET efficiency determined independently by fluorescence lifetime imaging was 0.20–0.24, identifying the M2 receptor as a tetramer. The strategy described here yields an explicit estimate of oligomeric size on the basis of fluorescence properties alone. Its broader application could resolve the general question of whether G protein-coupled receptors exist as dimers or larger oligomers. The size of an oligomer has functional implications, and such information can be expected to contribute to an understanding of the signaling process. 相似文献
15.
Zhengtao Chu Kathleen LaSance Victor Blanco Chang-Hyuk Kwon Balveen Kaur Malinda Frederick Sherry Thornton Lisa Lemen Xiaoyang Qi 《Journal of visualized experiments : JoVE》2014,(87)
We describe a multi-angle rotational optical imaging (MAROI) system for in vivo monitoring of physiopathological processes labeled with a fluorescent marker. Mouse models (brain tumor and arthritis) were used to evaluate the usefulness of this method. Saposin C (SapC)-dioleoylphosphatidylserine (DOPS) nanovesicles tagged with CellVue Maroon (CVM) fluorophore were administered intravenously. Animals were then placed in the rotational holder (MARS) of the in vivo imaging system. Images were acquired in 10° steps over 380°. A rectangular region of interest (ROI) was placed across the full image width at the model disease site. Within the ROI, and for every image, mean fluorescence intensity was computed after background subtraction. In the mouse models studied, the labeled nanovesicles were taken up in both the orthotopic and transgenic brain tumors, and in the arthritic sites (toes and ankles). Curve analysis of the multi angle image ROIs determined the angle with the highest signal. Thus, the optimal angle for imaging each disease site was characterized. The MAROI method applied to imaging of fluorescent compounds is a noninvasive, economical, and precise tool for in vivo quantitative analysis of the disease states in the described mouse models. 相似文献
16.
Tameka A. Bailey Haitao Luan Eric Tom Timothy Alan Bielecki Bhopal Mohapatra Gulzar Ahmad Manju George David L. Kelly Amarnath Natarajan Srikumar M. Raja Vimla Band Hamid Band 《The Journal of biological chemistry》2014,289(44):30443-30458
ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. 相似文献
17.
Ewoud B. Compeer Thijs W. H. Flinsenberg Louis Boon Mirjam E. Hoekstra Marianne Boes 《The Journal of biological chemistry》2014,289(1):520-528
Mouse dendritic cells (DCs) can rapidly extend their Class II MHC-positive late endosomal compartments into tubular structures, induced by Toll-like receptor (TLR) triggering. Within antigen-presenting DCs, tubular endosomes polarize toward antigen-specific CD4+ T cells, which are considered beneficial for their activation. Here we describe that also in human DCs, TLR triggering induces tubular late endosomes, labeled by fluorescent LDL. TLR triggering was insufficient for induced tubulation of transferrin-positive endosomal recycling compartments (ERCs) in human monocyte-derived DCs. We studied endosomal remodeling in human DCs in co-cultures of DCs with CD8+ T cells. Tubulation of ERCs within human DCs requires antigen-specific CD8+ T cell interaction. Tubular remodeling of endosomes occurs within 30 min of T cell contact and involves ligation of HLA-A2 and ICAM-1 by T cell-expressed T cell receptor and LFA-1, respectively. Disintegration of microtubules or inhibition of endosomal recycling abolished tubular ERCs, which coincided with reduced antigen-dependent CD8+ T cell activation. Based on these data, we propose that remodeling of transferrin-positive ERCs in human DCs involves both innate and T cell-derived signals. 相似文献
18.
Neha Abrol Nikolai Smolin Gareth Armanious Delaine K. Ceholski Catharine A. Trieber Howard S. Young Seth L. Robia 《The Journal of biological chemistry》2014,289(37):25855-25866
To determine the structural and regulatory role of the C-terminal residues of phospholamban (PLB) in the membranes of living cells, we fused fluorescent protein tags to PLB and sarco/endoplasmic reticulum calcium ATPase (SERCA). Alanine substitution of PLB C-terminal residues significantly altered fluorescence resonance energy transfer (FRET) from PLB to PLB and SERCA to PLB, suggesting a change in quaternary conformation of PLB pentamer and SERCA-PLB regulatory complex. Val to Ala substitution at position 49 (V49A) had particularly large effects on PLB pentamer structure and PLB-SERCA regulatory complex conformation, increasing and decreasing probe separation distance, respectively. We also quantified a decrease in oligomerization affinity, an increase in binding affinity of V49A-PLB for SERCA, and a gain of inhibitory function as quantified by calcium-dependent ATPase activity. Notably, deletion of only a few C-terminal residues resulted in significant loss of PLB membrane anchoring and mislocalization to the cytoplasm and nucleus. C-terminal truncations also resulted in progressive loss of PLB-PLB FRET due to a decrease in the apparent affinity of PLB oligomerization. We quantified a similar decrease in the binding affinity of truncated PLB for SERCA and loss of inhibitory potency. However, despite decreased SERCA-PLB binding, intermolecular FRET for Val49-stop (V49X) truncation mutant was paradoxically increased as a result of an 11.3-Å decrease in the distance between donor and acceptor fluorophores. We conclude that PLB C-terminal residues are critical for localization, oligomerization, and regulatory function. In particular, the PLB C terminus is an important determinant of the quaternary structure of the SERCA regulatory complex. 相似文献
19.
Li Ding Hua-Jun Feng Robert L. Macdonald Emanuel J. Botzolakis Ningning Hu Martin J. Gallagher 《The Journal of biological chemistry》2010,285(34):26390-26405
A GABAA receptor (GABAAR) α1 subunit mutation, A322D (AD), causes an autosomal dominant form of juvenile myoclonic epilepsy (ADJME). Previous studies demonstrated that the mutation caused α1(AD) subunit misfolding and rapid degradation, reducing its total and surface expression substantially. Here, we determined the effects of the residual α1(AD) subunit expression on wild type GABAAR expression to determine whether the AD mutation conferred a dominant negative effect. We found that although the α1(AD) subunit did not substitute for wild type α1 subunits on the cell surface, it reduced the surface expression of α1β2γ2 and α3β2γ2 receptors by associating with the wild type subunits within the endoplasmic reticulum and preventing them from trafficking to the cell surface. The α1(AD) subunit reduced surface expression of α3β2γ2 receptors by a greater amount than α1β2γ2 receptors, thus altering cell surface GABAAR composition. When transfected into cultured cortical neurons, the α1(AD) subunit altered the time course of miniature inhibitory postsynaptic current kinetics and reduced miniature inhibitory postsynaptic current amplitudes. These findings demonstrated that, in addition to causing a heterozygous loss of function of α1(AD) subunits, this epilepsy mutation also elicited a modest dominant negative effect that likely shapes the epilepsy phenotype. 相似文献
20.
Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4'',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells. 相似文献