首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Cytochemical analysis demonstrated that a high percentage of human Y-79 retinoblastoma cells displayed a specific labeling by the biotinyl derivative of pituitary adenylate cyclase-activating polypeptide (PACAP), a novel neuropeptide of the secretin-vasoactive intestinal peptide (VIP) family of peptides. In cell membranes, the two molecular forms of PACAP, the one with 38 (PACAP 38) and the other with 27 (PACAP 27) amino acids, displaced the binding of 125I-PACAP 27 with IC50 values in the picomolar range and increased adenylyl cyclase activity by 100-fold with EC50 values of 27 and 180 p M , respectively. VIP, human peptide histidine-isoleucine, glucagon, and secretin were much less effective and potent in both receptor assays. The PACAP receptor antagonists PACAP 6–27 and PACAP 6–38 and an antiserum directed against the stimulatory G protein Gs inhibited the PACAP stimulation of adenylyl cyclase. In intact cells, both PACAPs and VIP failed to stimulate the phosphoinositide hydrolysis, whereas in cell membranes PACAP 38, but not the other peptides, produced a modest increase (40%) of inositol phosphate formation with an EC50 value of 22 n M . However, this effect was not antagonized by either PACAP 6–38 or PACAP 6–27. These data demonstrate the presence in human Y-79 retinoblastoma cells of specific PACAP receptors and provide further evidence that PACAP may act as a neurotransmitter/neuromodulator in mammalian retina.  相似文献   

2.
垂体腺苷酸环化酶激活肽的研究概况   总被引:1,自引:0,他引:1  
垂体腺苷酸环化酶激活肽(PACAP)及其受体存在于许多动物的下丘脑和垂体中,而且在肾上腺、睾丸、卵巢、肝脏、肾脏、胰腺、松果腺、心脏、脊椎、神经节、呼吸系统和消化系统等组织或系统中也存在,其中肾上腺含量最高.在这些组织或系统中,通过Ca2+、Na+、腺苷酸环化酶或磷酸肌醇等作用通路,PACAP发挥神经递质/调质、或神经营养因子等生物学功能.  相似文献   

3.
4.
Abstract: Two forms of pituitary adenylate cyclase-activating polypeptide (PACAP), the 38- and 27-amino-acid forms (PACAP38 and PACAP27, respectively), which share amino acid sequence homology with vasoactive intestinal peptide (VIP), were evaluated for their abilities to regulate sympathetic neuron catecholamine and neuropeptide Y (NPY) expression. PACAP38 and PACAP27 potently and efficaciously stimulated NPY and catecholamine secretion in primary cultured superior cervical ganglion (SCG) neurons; 100- to 1,000-fold higher concentrations of VIP were required to modulate secretion, suggesting that SCG neurons express the PACAP-selective type I receptor. PACAP38 elicited a sustained seven- to ninefold increase in the rate of NPY secretion and three-fold stimulation in the rate of catecholamine release. PACAP38 and PACAP27 produced parallel neuronal NPY and catecholamine release, but cellular levels of NPY and catecholamines were differentially regulated. Sympathetic neuron NPY content was decreased, whereas cellular total catecholamine levels were elevated by the PACAP peptides; total NPY and catecholamine levels (secreted plus cellular content) were increased. In concert with the increased total peptide and transmitter production, pro-NPY and tyrosine hydroxylase mRNA levels were elevated. Furthermore, PACAP38 was more efficacious than PACAP27 in regulating pro-NPY and tyrosine hydroxylase mRNA. SCG neuronal expression of mRNA encoding the type I PACAP receptor further supported the studies demonstrating that sympathetic neuronal levels of NPY and catecholamine content and secretion and mRNA are differentially regulated by the PACAP peptides.  相似文献   

5.
6.
Abstract: In this study, the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic nucleotide accumulation and melatonin (MT) production in dispersed rat pinealocytes were measured. Treatment with PACAP (10−7 M ) increased MT production 2.5-fold. PACAP (10−7 M ) also increased cyclic AMP accumulation four- to fivefold; this effect was potentiated two- to three-fold by α1-adrenergic activation. This potentiation appears to involve protein kinase C (PKC) because α1-adrenergic activation is known to translocate PKC and the PACAP-stimulated cyclic AMP accumulation was potentiated ninefold by a PKC activator, 4β-phorbol 12-myristate 13-acetate (PMA). Phenylephrine and PMA also potentiated the PACAP-stimulated MT accumulation. These results indicate that cyclic AMP is one second messenger of PACAP in the pineal gland and that the effects of PACAP on cyclic AMP and MT production can be potentiated by an α1-adrenergic → PKC mechanism. In addition to these findings, it was observed that PACAP treatment with or without phenylephrine or PMA did not alter cyclic GMP accumulation. This indicates that PACAP is the first ligand identified that increases cyclic AMP accumulation in the pineal gland without increasing cyclic GMP accumulation. That PACAP fails to activate the vasoactive intestinal peptide/cyclic GMP pathway suggests that the vasoactive intestinal peptide receptors present in the pineal may be distinct from the type II PACAP receptors.  相似文献   

7.
Abstract: At the end of neuronal migration, the neopallial germinative zone produces glial cells destined to colonize the upper layers of neocortex. High densities of binding sites for vasoactive intestinal peptide (VIP) have been found in the rodent germinative zone just after completion of neuronal migration, suggesting a possible role of VIP in neocortical astrocytogenesis. In the present study, administration of a VIP antagonist at embryonic days 17 and 18 to pregnant mice was followed by a dramatic depletion of astrocytes in the upper cortical layer of the offspring. The depletion of astrocytes was dose-dependent, with a 42% reduction in the density of astrocytes observed with 50 µg of antagonist. The antagonist effect was reversed by cotreatment with VIP or pituitary adenylate cyclase-activating polypeptide (PACAP), suggesting the involvement of a receptor common to these two neuropeptides. VIP antagonist-induced inhibition of astrocytogenesis was also blocked by Ro 25-1553, a long-acting cyclic VIP analogue selective for the PACAP II VIP2 receptor subclass. Our results demonstrate that VIP and/or PACAP play a crucial physiological role in neocortical astrocytogenesis, possibly through interaction with PACAP II VIP2 receptors.  相似文献   

8.
International Journal of Peptide Research and Therapeutics - The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been identified to facilitate osteogenic differentiation...  相似文献   

9.
Abstract: Previous reports have demonstrated that glutamate stimulates c- fos mRNA expression in primary cultures of mouse cerebral cortical neurons. We show here that vasoactive intestinal peptide (VIP) induces c- fos mRNA expression; however, this effect of VIP is completely inhibited by the noncompetitive NMDA receptor antagonist MK-801, therefore indicating that VIP stimulates c- fos expression in a glutamate-dependent manner. A similar effect was observed with pituitary adenylate cyclase-activating polypeptide27 (PACAP27). At the intracellular level, coactivation of protein kinases A and C mediates the glutamate-dependent stimulation of c- fos expression evoked by VIP, because either H-89 or staurosporin inhibits the effect of VIP as well as that of glutamate. These results point to a "biochemical AND gate" mechanism, which implies the obligatory activation of both protein kinases A and C in the transduction of c- fos expression. In summary, this article provides evidence that VIP and PACAP27 potentiate the effect of glutamate, the principal effector on c- fos expression, suggesting that both peptides can increase the "throughput" or "strength" of glutamate-containing circuits in the cerebral cortex.  相似文献   

10.
11.
Abstract: The presence of receptors for the novel neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been recently demonstrated in the external granule cell layer of the cerebellum, a germinative matrix that generates the majority of cerebellar interneurons. In the present study, we have taken advantage of the possibility of obtaining a culture preparation that is greatly enriched in immature cerebellar granule cells to investigate the effect of PACAP on the adenylyl cyclase and phospholipase C transduction pathways. The two molecular forms of PACAP, i.e., 27-(PACAP27) and 38-(PACAP38) amino-acid forms of PACAP, induced a dose-dependent stimulation of cyclic AMP production in granule cells. The potencies of PACAP27 and PACAP38 were similar (ED50 = 0.12 ± 0.01 and 0.23 ± 0.07 n M , respectively), whereas vasoactive intestinal polypeptide (VIP) was ∼100 times less potent. PACAP27 and PACAP38 also induced a dose-dependent stimulation of polyphosphoinositide breakdown (ED50 = 19.1 ± 6.3 and 13.4 ± 6.0 n M , respectively), whereas VIP had no effect on polyphosphoinositide metabolism. The effect of PACAP38 on inositol phosphate formation was significantly reduced by U-73122 and by pertussis toxin, indicating that activation of PACAP receptors causes stimulation of a phospholipase C through a pertussis toxin-sensitive G protein. In contrast, forskolin and dibutyryl cyclic AMP did not affect PACAP-induced stimulation of inositol phosphates. Taken together, the present results demonstrate that PACAP stimulates independently the adenylyl cyclase and the phospholipase C transduction pathways in immature cerebellar granule cells. These data favor the concept that PACAP may play important roles in the control of proliferation and/or differentiation of cerebellar neuroblasts.  相似文献   

12.
13.
Abstract: The 27 amino acid peptide, pituitary adenylate cyclase-activating polypeptide (PACAP-27), and its 38 amino acid analogue, PACAP-38, stimulate serotonin- N -acetyltransferase (NAT) activity and N -acetylserotonin (NAS) and melatonin content of pineal glands from adult rats. Maximal stimulation of rat pineal NAT by PACAP-38 is not increased further significantly by concurrent stimulation with the two related peptides, vasoactive intestinal polypeptide (VIP) and/or peptide N-terminal histidine C-terminal isoleucine (PHI). Isoproterenol was a more potent inducer of NAT activity than any of these peptides alone or in combination. PACAP-38 also stimulates melatonin production by chicken pineal cells in culture as does VIP. Stimulation by both was not greater than after either alone. Prior stimulation of rat pineal NAT activity with VIP, PHI, or PACAP-38 reduces the magnitude of subsequent stimulation with PACAP-38 or forskolin. Concurrent stimulation of α-receptors or treatment with active phorbol ester augments rat pineal response to PACAP-38 stimulation just as it increases the response to VIP, PHI, and β-receptor stimulation. Pineals from newborn rats respond to PACAP-38 with an increase in NAT activity and the increase is augmented by concomitant α1-adrenergic stimulation. The putative PACAP inhibitor PACAP (6–38) and the putative VIP inhibitor (Ac-Tyr, d -Phe)-GRF 1–29 amide, in 100–1,000-fold excess, did not affect the stimulatory activity of any of the peptides. Pineal melatonin concentration parallels changes in pineal NAT activity.  相似文献   

14.
Abstract: In this study, the effects of three related peptides, pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, and vasoactive intestinal peptide (VIP), on cyclic AMP (cAMP) accumulation and intracellular Ca2+ concentration ([Ca2+]i) were compared in N1E-115 cells. PACAP38 and PACAP27 stimulated cAMP accumulation up to 60-fold with EC50 values of 0.54 and 0.067 n M , respectively. The effect of VIP on cAMP accumulation was less potent. The binding of 125I-PACAP27 to intact cells was inhibited by PACAP38 and PACAP27 (IC50 values of 0.44 and 0.55 n M , respectively) but not by VIP. In fura-2-loaded cells, both PACAP38 and PACAP27 increased [Ca2+]i with EC50 values around 10 n M . The interactions of these three peptides with ionomycin, a Ca2+ ionophore, and 4β-phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were also determined. Ionomycin increased the cAMP accumulation caused by all three peptides. With low concentrations of PACAP38 or PACAP27, the effect of PMA was inhibitory, whereas at higher concentrations of PACAP (>1 n M ), the effect of PMA was stimulatory. Similar to other agents that elevate cAMP, PACAP38 was an effective stimulator of neurite outgrowth. These results show that (a) PACAP27 and PACAP38 stimulate cAMP accumulation and increase [Ca2+]i through the type I PACAP receptors in N1E-115 cells, (b) ionomycin enhances cAMP accumulation by all three peptides, and (c) activation of protein kinase C has a dose-dependent stimulatory or inhibitory effect on the PACAP38- or PACAP27-stimulated cAMP accumulation.  相似文献   

15.
垂体腺苷酸环化酶激活肽基因合成表达和产物纯化与鉴定   总被引:1,自引:0,他引:1  
为利用基因工程技术获得垂体腺苷酸环化酶激活肽 (pituitaryadenylatecyclaseactivatingpolypeptide ,PACAP) ,根据大肠杆菌的密码偏好性 ,设计并人工合成编码 38个氨基酸的PACAP基因 .克隆到表达载体pET 35b(+) ,构建重组质粒pET PACAP ,转化大肠杆菌BL2 1 (DE3)pLysS+ .实现纤维素结合域 (cellulosebindingdomain ,CBD)与PACAP融合蛋白的表达 ,并在两者之间引入 (凝血 )因子Ⅹa识别位点 (Ile Glu Gly Arg↓ ) .融合蛋白CBD PACAP经纤维素亲和层析纯化后 ,因子Ⅹa酶切释放PACAP .在因子Ⅹa识别位点前引入 7个氨基酸的柔性短肽 (Gly Thr Gly Gly Gly Ser Gly)明显提高了融合蛋白对因子Ⅹa的敏感性 .HPLC进一步纯化得到纯度大于 95 %PACAP多肽 .所得的PACAP多肽的Western印迹鉴定为阳性 ;激光飞行质谱测定分子量结果与理论值相符 .生物活性分析表明 ,所制备的PACAP具有促进胰腺癌细胞株SW 1 990胞内cAMP合成的活性  相似文献   

16.
Pituitary adenylate cyclase-activating peptide (PACAP) is widely distributed throughout the nervous system. PACAP not only acts as a neurotransmitter but also elicits a broad spectrum of biological action via the PACAP-specific receptor, PAC1. However, no studies have investigated PACAP and PAC1 in the periodontal ligament (PDL), so we aimed to perform this investigation in rats after tooth luxation. In the PDL of an intact first molar, there are few osteoclasts and osteoblasts. However, at days 3 and 5 after luxation, large PAC1-positive cells, thought to be osteoclasts because of their expression of the osteoclast marker, tartrate-resistant acid phosphatase, were detected in appreciable numbers. Osteoblast numbers increased dramatically on day 7 after luxation, and PAC1-positive mononuclear small cells were increased at day 14, many of which expressed the osteoblast marker, alkaline phosphatase. PACAP-positive nerve fibers were rarely detected in the PDL of intact first molars, but were increasingly evident at this site on days 5 and 7 after luxation. Double-immunofluorescence analysis demonstrated the relationship between PACAP-positive nerve fibers and PAC1-positive osteoclasts/-blasts in the PDL. At 5 days after luxation, PACAP-positive nerve fibers appeared in close proximity to PAC1-positive osteoclasts. At 7 days after luxation, PACAP-positive nerve fibers appeared in close proximity to PAC1-positive osteoblasts. These results suggest that PACAP may have effects on osteoclasts and osteoblasts in the PDL after tooth luxation and thus regulate bone remodeling after these types of injury.  相似文献   

17.
18.
19.
Acute terminal ileitis was for many years thought to be due only to Crohn''s disease, though most patients found at laparotomy to have this condition did not progress to the chronic form of Crohn''s disease. A case of acute terminal ileitis due to Yersinia pseudotuberculosis is presented here to draw attention to another, perhaps predominant, cause of this condition.  相似文献   

20.
Abstract: Removal of nerve growth factor (NGF) from sympathetic neurons initiates a neuronal death program and apoptosis. We show that pituitary adenylyl cyclase-activating polypeptide (PACAP) prevents apoptosis in NGF-deprived sympathetic neurons. PACAP (100 nM) added to culture medium at the time of plating failed to support neuronal survival. However, in neurons grown for 2 days with NGF and then deprived of NGF, PACAP prevented cell death for the next 24–48 h. Uptake of [3H]norepinephrine ([3H]NE) was used as an index of survival and decreased >50% in NGF-deprived cultures within 24 h. PACAP (1–100 nM) restored [3H]NE uptake to 92 ± 8% of that of NGF-supported controls. Depolarization-induced [3H]NE release in neurons rescued by PACAP was the same as that in NGF-supported neurons. PACAP rescue was not mimicked by forskolin or 8-bromo-cyclic AMP and was not blocked by the protein kinase A inhibitor Rp-adenosine 3′,5′-cyclic monophosphothioate. Mobilization of phosphatidylinositol by muscarine failed to support NGF-deprived neurons. Thus, PACAP may use novel signaling to promote survival of sympathetic neurons. The apoptosis-associated caspase CPP32 activity increased approximately fourfold during 6 h of NGF withdrawal (145 ± 40 versus 38 ± 17 nmol of substrate cleaved/min/mg of protein) and returned to even below the control level in NGF-deprived, PACAP-rescued cultures (14 ± 7 nmol/min/mg of protein). Readdition of NGF or PACAP to NGF-deprived cultures reversed CPP32 activation, and this was blocked by lactacystin, a potent and specific inhibitor of the 20S proteasome, suggesting that NGF and PACAP target CPP32 for destruction by the proteasome. As PACAP is a preganglionic neurotransmitter in autonomic ganglia, we propose a novel function for this transmitter as an apoptotic rescuer of sympathetic neurons when the supply of NGF is compromised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号