首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Backgrounds

Early brain injury (EBI) plays a key role in the pathogenesis of subarachnoid hemorrhage (SAH). Neuronal apoptosis is involved in the pathological process of EBI. Hydrogen can inhibit neuronal apoptosis and attenuate EBI following SAH. However, the molecular mechanism underlying hydrogen-mediated anti-apoptotic effects in SAH has not been elucidated. In the present study, we aimed to evaluate whether hydrogen alleviates EBI after SAH, specifically neuronal apoptosis, partially via the Akt/GSK3β signaling pathway.

Methods

Sprague-Dawley rats (n = 85) were randomly divided into the following groups: sham group (n = 17), SAH group (n = 17), SAH + saline group (n = 17), SAH + hydrogen-rich saline (HS) group (n = 17) and SAH + HS + Ly294002 (n = 17) group. HS or an equal volume of physiological saline was administered immediately after surgery and repeated 8 hours later. The PI3K inhibitor, Ly294002, was applied to manipulate the proposed pathway. Neurological score and SAH grade were assessed at 24 hours after SAH. Western blot was used for the quantification of Akt, pAkt, GSK3β, pGSK3β, Bcl-2, Bax and cleaved caspase-3 proteins. Neuronal apoptosis was identified by double staining of terminal deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining and NeuN, and quantified by apoptosis index. Immunohistochemistry and immunofluorescent double-labeling staining was performed to clarify the relationships between neuronal apoptosis and pAkt or pGSK3β.

Results

HS significantly reduced neuronal apoptosis and improved neurological function at 24 hours after SAH. The levels of pAkt and pGSK3β, mainly expressed in neurons, were markedly up-regulated. Additionally, Bcl-2 was significantly increased while Bax and cleaved caspase-3 was decreased by HS treatment. Double staining of pAkt and TUNEL showed few colocalization of pAkt-positive cells and TUNEL-positive cells. The inhibitor of PI3K, Ly294002, suppressed the beneficial effects of HS.

Conclusions

HS could attenuate neuronal apoptosis in EBI and improve the neurofunctional outcome after SAH, partially via the Akt/GSK3β pathway.  相似文献   

2.
The aim of this study was to characterize a Triticum aestivum-Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) disomic addition line 2-1-6-3. Individual line 2-1-6-3 plants were analyzed using cytological, genomic in situ hybridization (GISH), EST-SSR, and EST-STS techniques. The alien addition line 2-1-6-3 was shown to have two P. huashanica chromosomes, with a meiotic configuration of 2n = 44 = 22 II. We tested 55 EST-SSR and 336 EST-STS primer pairs that mapped onto seven different wheat chromosomes using DNA from parents and the P. huashanica addition line. One EST-SSR and nine EST-STS primer pairs indicated that the additional chromosome of P. huashanica belonged to homoeologous group 7, the diagnostic fragments of five EST-STS markers (BE404955, BE591127, BE637663, BF482781 and CD452422) were cloned, sequenced and compared. The results showed that the amplified polymorphic bands of P. huashanica and disomic addition line 2-1-6-3 shared 100% sequence identity, which was designated as the 7Ns disomic addition line. Disomic addition line 2-1-6-3 was evaluated to test the leaf rust resistance of adult stages in the field. We found that one pair of the 7Ns genome chromosomes carried new leaf rust resistance gene(s). Moreover, wheat line 2-1-6-3 had a superior numbers of florets and grains per spike, which were associated with the introgression of the paired P. huashanica chromosomes. These high levels of disease resistance and stable, excellent agronomic traits suggest that this line could be utilized as a novel donor in wheat breeding programs.  相似文献   

3.

Purpose

The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse.

Methods

Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed.

Results

Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice.

Conclusions

Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations.  相似文献   

4.
Animal and human studies have indicated that fatty acids such as the conjugated linoleic acids (CLA) found in milk could potentially alter the risk of developing metabolic disorders including diabetes and cardiovascular disease (CVD). Using susceptible rodent models (apoE−/− and LDLr−/− mice) we investigated the interrelationship between mouse strain, dietary conjugated linoleic acids and metabolic markers of CVD. Despite an adverse metabolic risk profile, atherosclerosis (measured directly by lesion area), was significantly reduced with t-10, c-12 CLA and mixed isomer CLA (Mix) supplementation in both apoE−/− (p<0.05, n = 11) and LDLr−/− mice (p<0.01, n = 10). Principal component analysis was utilized to delineate the influence of multiple plasma and tissue metabolites on the development of atherosclerosis. Group clustering by dietary supplementation was evident, with the t-10, c-12 CLA supplemented animals having distinct patterns, suggestive of hepatic insulin resistance, regardless of mouse strain. The effect of CLA supplementation on hepatic lipid and fatty acid composition was explored in the LDLr−/− strain. Dietary supplementation with t-10, c-12 CLA significantly increased liver weight (p<0.05, n = 10), triglyceride (p<0.01, n = 10) and cholesterol ester content (p<0.01, n = 10). Furthermore, t-10, c-12 CLA also increased the ratio of 18∶1 to 18∶0 fatty acid in the liver suggesting an increase in the activity of stearoyl-CoA desaturase. Changes in plasma adiponectin and liver weight with t-10, c-12 CLA supplementation were evident within 3 weeks of initiation of the diet. These observations provide evidence that the individual CLA isomers have divergent mechanisms of action and that t-10, c-12 CLA rapidly changes plasma and liver markers of metabolic syndrome, despite evidence of reduction in atherosclerosis.  相似文献   

5.
Acute starvation, which is frequently observed in clinical practice, sometimes augments the cytolytic activity of natural killer cells against neoplastic cells. In this study, we investigated the molecular mechanisms underlying the enhancement of natural killer cell function by fasting in mice. The total number of liver resident natural killer cells in a unit weight of liver tissue obtained from C57BL/6J mice did not change after a 3-day fast, while the proportions of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)+ and CD69+ natural killer cells were significantly elevated (n = 7, p <0.01), as determined by flow cytometric analysis. Furthermore, we found that TRAIL natural killer cells that were adoptively transferred into Rag-2−/− γ chain−/− mice could convert into TRAIL+ natural killer cells in fasted mice at a higher proportion than in fed mice. Liver natural killer cells also showed high TRAIL-mediated antitumor function in response to 3-day fasting. Since these fasted mice highly expressed heat shock protein 70 (n = 7, p <0.05) in liver tissues, as determined by western blot, the role of this protein in natural killer cell activation was investigated. Treatment of liver lymphocytes with 50 µg/mL of recombinant heat shock protein 70 led to the upregulation of both TRAIL and CD69 in liver natural killer cells (n = 6, p <0.05). In addition, HSP70 neutralization by intraperitoneally injecting an anti- heat shock protein 70 monoclonal antibody into mice prior to fasting led to the downregulation of TRAIL expression (n = 6, p <0.05). These findings indicate that acute fasting enhances TRAIL-mediated liver natural killer cell activity against neoplastic cells through upregulation of heat shock protein 70.  相似文献   

6.
Intestinal Cl secretion is stimulated by cyclic AMP (cAMP) and intracellular calcium ([Ca2+]i). Recent studies show that protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac) are downstream targets of cAMP. Therefore, we tested whether both PKA and Epac are involved in forskolin (FSK)/cAMP-stimulated Cl secretion. Human intestinal T84 cells and mouse small intestine were used for short circuit current (Isc) measurement in response to agonist-stimulated Cl secretion. FSK-stimulated Cl secretion was completely inhibited by the additive effects of the PKA inhibitor, H89 (1 µM), and the [Ca2+]i chelator, 1,2-bis-(o-aminophenoxy)-ethane-N,N,N’,N’-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM; 25 µM). Both FSK and the Epac activator 8-pCPT-2’-O-Me-cAMP (50 µM) elevated [Ca2+]i, activated Ras-related protein 2, and induced Cl secretion in intact or basolateral membrane–permeabilized T84 cells and mouse ileal sheets. The effects of 8-pCPT-2’-O-Me-cAMP were completely abolished by BAPTA-AM, but not by H89. In contrast, T84 cells with silenced Epac1 had a reduced Isc response to FSK, and this response was completely inhibited by H89, but not by the phospholipase C inhibitor U73122 or BAPTA-AM. The stimulatory effect of 8-pCPT-2’-O-Me-cAMP on Cl secretion was not abolished by cystic fibrosis transmembrane conductance (CFTR) inhibitor 172 or glibenclamide, suggesting that CFTR channels are not involved. This was confirmed by lack of effect of 8-pCPT-2’-O-Me-cAMP on whole cell patch clamp recordings of CFTR currents in Chinese hamster ovary cells transiently expressing the human CFTR channel. Furthermore, biophysical characterization of the Epac1-dependent Cl conductance of T84 cells mounted in Ussing chambers suggested that this conductance was hyperpolarization activated, inwardly rectifying, and displayed a Cl>Br>I permeability sequence. These results led us to conclude that the Epac-Rap-PLC-[Ca2+]i signaling pathway is involved in cAMP-stimulated Cl secretion, which is carried by a novel, previously undescribed Cl channel.  相似文献   

7.

Objective

Progranulin and C1q/TNF-related protein-3 (CTRP3) were recently discovered as novel adipokines which may link obesity with altered regulation of glucose metabolism, chronic inflammation and insulin resistance.

Research Design and Methods

We examined circulating progranulin and CTRP3 concentrations in 127 subjects with (n = 44) or without metabolic syndrome (n = 83). Furthermore, we evaluated the relationship of progranulin and CTRP3 levels with inflammatory markers and cardiometabolic risk factors, including high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), estimated glomerular filtration rate (eGFR), and adiponectin serum concentrations, as well as carotid intima-media thickness (CIMT).

Results

Circulating progranulin levels are significantly related with inflammatory markers, hsCRP (r = 0.30, P = 0.001) and IL-6 (r = 0.30, P = 0.001), whereas CTRP3 concentrations exhibit a significant association with cardiometabolic risk factors, including waist circumference (r = −0.21), diastolic blood pressure (r = −0.21), fasting glucose (r = −0.20), triglyceride (r = −0.34), total cholesterol (r = −0.25), eGFR (r = 0.39) and adiponectin (r = 0.26) levels. Serum progranulin concentrations were higher in patients with metabolic syndrome than those of the control group (199.55 [179.33, 215.53] vs. 185.10 [160.30, 204.90], P = 0.051) and the number of metabolic syndrome components had a significant positive correlation with progranulin levels (r = 0.227, P = 0.010). In multiple regression analysis, IL-6 and triglyceride levels were significant predictors of serum progranulin levels (R 2 = 0.251). Furthermore, serum progranulin level was an independent predictor for increased CIMT in subjects without metabolic syndrome after adjusting for other cardiovascular risk factors (R 2 = 0.365).

Conclusions

Serum progranulin levels are significantly associated with systemic inflammatory markers and were an independent predictor for atherosclerosis in subjects without metabolic syndrome.

Trial Registration

ClinicalTrials.gov NCT01668888  相似文献   

8.
Diabetic neuropathy is a severe complication of long-standing diabetes and one of the major etiologies of neuropathic pain. Diabetes is associated with an increased formation of reactive oxygen species and the electrophilic dicarbonyl compound methylglyoxal (MG). Here we show that MG stimulates heterologously expressed TRPA1 in CHO cells and natively expressed TRPA1 in MDCK cells and DRG neurons. MG evokes [Ca2+]i-responses in TRPA1 expressing DRG neurons but is without effect in neurons cultured from Trpa1−/− mice. Consistent with a direct, intracellular action, we show that methylglyoxal is significantly more potent as a TRPA1 agonist when applied to the intracellular face of excised membrane patches than to intact cells. Local intraplantar administration of MG evokes a pain response in Trpa1+/+ but not in Trpa1−/− mice. Furthermore, persistently increased MG levels achieved by two weeks pharmacological inhibition of glyoxalase-1 (GLO-1), the rate-limiting enzyme responsible for detoxification of MG, evokes a progressive and marked thermal (cold and heat) and mechanical hypersensitivity in wildtype but not in Trpa1−/− mice. Our results thus demonstrate that TRPA1 is required both for the acute pain response evoked by topical MG and for the long-lasting pronociceptive effects associated with elevated MG in vivo. In contrast to our observations in DRG neurons, MG evokes indistinguishable [Ca2+]i-responses in pancreatic β-cells cultured from Trpa1+/+ and Trpa1−/− mice. In vivo, the TRPA1 antagonist HC030031 impairs glucose clearance in the glucose tolerance test both in Trpa1+/+ and Trpa1−/− mice, indicating a non-TRPA1 mediated effect and suggesting that results obtained with this compound should be interpreted with caution. Our results show that TRPA1 is the principal target for MG in sensory neurons but not in pancreatic β-cells and that activation of TRPA1 by MG produces a painful neuropathy with the behavioral hallmarks of diabetic neuropathy.  相似文献   

9.

Purpose

The inhibition of serum glucocorticoid-regulated kinase-1 (SGK-1) has been found to decrease growth of colon and prostate cancer cells. The purpose of this study is to evaluate the therapeutic effect of SGK-1 inhibition in head and neck squamous cell carcinoma (SCC).

Experimental Design

Human head and neck tumors (HTB41/43) were established in athymic mice. Growth rates between mice treated with vehicle (PBS) injection (group 1, n = 5), SGK-1 Inhibitor GSK 650394 (group 2, n = 6), systemic cisplatin (group 3, n = 6), and a combination of SGK-1 Inhibitor and cisplatin (group 4, n = 6) were compared using repeated measures one-way ANOVA with Newman-Keuls Multiple Comparison Test. Tumor cells were subsequently submitted to further analyses.

Results

At the end of the experiment mean tumor sizes were 122.33+/−105.86, 76.73+/−36.09, 94.52+/−75.92, and 25.76+/−14.89 mm2 (mean +/− SD) for groups 1 to 4. Groups 2 and 3 showed decreased tumor growth compared to controls (p<0.001). Group 4 displayed even greater growth suppression (p<0.0001). Importantly, group 4 fared better than group 3 (p<0.001). CD44 expression was reduced in group 2 (p<0.05), and to an even greater extent in groups 3 and 4 (p<0.0025). A trend towards reduction of HER 2 expression was noted in group 4.

Conclusions

SGK-1 inhibition suppresses tumor growth, and in combination with systemic cisplatin exceeds the effect of cisplatin alone. Decreased expression of CD44 and HER 2 implies depletion of tumor stem cells, and less tumorigenicity. SGK-1 inhibition represents a potential modality of local control for palliation in advanced cases.  相似文献   

10.

Background

Serotonergic system participates in a wide range of physiological processes and behaviors, but its role is generally considered as modulatory and noncrucial, especially concerning life-sustaining functions. We recently created a transgenic mouse line in which a functional deficit in serotonin homeostasis due to excessive serotonin autoinhibition was produced by inducing serotonin 1A receptor (Htr1a) overexpression selectively in serotonergic neurons (Htr1a raphe-overexpressing or Htr1aRO mice). Htr1aRO mice exhibit episodes of autonomic dysregulation, cardiovascular crises and death, resembling those of sudden infant death syndrome (SIDS) and revealing a life-supporting role of serotonergic system in autonomic control. Since midbrain serotonergic neurons are chemosensitive and are implicated in arousal we hypothesized that their chemosensitivity might be impaired in Htr1aRO mice.

Principal findings

Loose-seal cell-attached recordings in brainstem slices revealed that serotonergic neurons in dorsal raphe nucleus of Htr1aRO mice have dramatically reduced responses to hypercapnic challenge as compared with control littermates. In control mice, application of 9% CO2 produced an increase in firing rate of serotonergic neurons (0.260±0.041 Hz, n = 20, p = 0.0001) and application of 3% CO2 decreased their firing rate (−0.142±0.025 Hz, n = 17, p = 0.0008). In contrast, in Htr1aRO mice, firing rate of serotonergic neurons was not significantly changed by 9% CO2 (0.021±0.034 Hz, n = 16, p = 0.49) and by 3% CO2 (0.012±0.046 Hz, n = 12, p = 0.97).

Conclusions

Our findings support the hypothesis that chemosensitivity of midbrain serotonergic neurons provides a physiological mechanism for arousal responses to life-threatening episodes of hypercapnia and that functional impairment, such as excessive autoinhibition, of midbrain serotonergic neuron responses to hypercapnia may contribute to sudden death.  相似文献   

11.

Background

Astroglial cells are activated following injury and up-regulate the expression of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. Adult mice lacking the intermediate filament proteins GFAP and vimentin (GFAP−/−Vim−/−) show attenuated reactive gliosis, reduced glial scar formation and improved regeneration of neuronal synapses after neurotrauma. GFAP−/−Vim−/− mice exhibit larger brain infarcts after middle cerebral artery occlusion suggesting protective role of reactive gliosis after adult focal brain ischemia. However, the role of astrocyte activation and reactive gliosis in the injured developing brain is unknown.

Methodology/Principal Findings

We subjected GFAP−/−Vim−/− and wild-type mice to unilateral hypoxia-ischemia (HI) at postnatal day 9 (P9). Bromodeoxyuridine (BrdU; 25 mg/kg) was injected intraperitoneally twice daily from P9 to P12. On P12 and P31, the animals were perfused intracardially. Immunohistochemistry with MAP-2, BrdU, NeuN, and S100 antibodies was performed on coronal sections. We found no difference in the hemisphere or infarct volume between GFAP−/−Vim−/− and wild-type mice at P12 and P31, i.e. 3 and 22 days after HI. At P31, the number of NeuN+ neurons in the ischemic and contralateral hemisphere was comparable between GFAP−/−Vim−/− and wild-type mice. In wild-type mice, the number of S100+ astrocytes was lower in the ipsilateral compared to contralateral hemisphere (65.0±50.1 vs. 85.6±34.0, p<0.05). In the GFAP−/−Vim−/− mice, the number of S100+ astrocytes did not differ between the ischemic and contralateral hemisphere at P31. At P31, GFAP−/−Vim−/− mice showed an increase in NeuN+BrdU+ (surviving newly born) neurons in the ischemic cortex compared to wild-type mice (6.7±7.7; n = 29 versus 2.9±3.6; n = 28, respectively, p<0.05), but a comparable number of S100+BrdU+ (surviving newly born) astrocytes.

Conclusions/Significance

Our results suggest that attenuation of reactive gliosis in the developing brain does not affect the hemisphere or infarct volume after HI, but increases the number of surviving newborn neurons.  相似文献   

12.
This is the first quantitative analysis of data from urine drug tests for compliance to treatment medications and abstinence from drug abuse across “levels of care” in six eastern states of America. Comprehensive Analysis of Reported Drugs (CARD) data was used in this post-hoc retrospective observational study from 10,570 patients, filtered to include a total of 2,919 patients prescribed at least one treatment medication during 2010 and 2011. The first and last urine samples (5,838 specimens) were analyzed; compliance to treatment medications and abstinence from drugs of abuse supported treatment effectiveness for many. Compared to non-compliant patients, compliant patients were marginally less likely to abuse opioids, cannabinoids, and ethanol during treatment although more likely to abuse benzodiazepines. Almost 17% of the non-abstinent patients used benzodiazepines, 15% used opiates, and 10% used cocaine during treatment. Compliance was significantly higher in residential than in the non-residential treatment facilities. Independent of level of care, 67.2% of the patients (n = 1963; P<.001) had every treatment medication found in both first and last urine specimens (compliance). In addition, 39.2% of the patients (n = 1143; P<.001) had no substance of abuse detected in either the first or last urine samples (abstinence). Moreover, in 2010, 16.9% of the patients (n = 57) were abstinent at first but not at last urine (deteriorating abstinence), the percentage dropped to 13.3% (n = 174) in 2011; this improvement over years was statistically significant. A longitudinal analysis for abstinence and compliance was studied in a randomized subset from 2011, (n = 511) representing 17.5% of the total cohort. A statistically significant upward trend (p = 2.353×10−8) of abstinence rates as well as a similar but stronger trend for compliance ((p = 2.200×10−16) was found. Being cognizant of the trend toward drug urine testing being linked to medical necessity eliminating abusive screening, the interpretation of these valuable results require further intensive investigation.  相似文献   

13.
Restless legs syndrome (RLS) is a sensorimotor disorder with an age-dependent prevalence of up to 10% in the general population above 65 years of age. Affected individuals suffer from uncomfortable sensations and an urge to move in the lower limbs that occurs mainly in resting situations during the evening or at night. Moving the legs or walking leads to an improvement of symptoms. Concomitantly, patients report sleep disturbances with consequences such as reduced daytime functioning. We conducted a genome-wide association study (GWA) for RLS in 922 cases and 1,526 controls (using 301,406 SNPs) followed by a replication of 76 candidate SNPs in 3,935 cases and 5,754 controls, all of European ancestry. Herein, we identified six RLS susceptibility loci of genome-wide significance, two of them novel: an intergenic region on chromosome 2p14 (rs6747972, P = 9.03 × 10−11, OR = 1.23) and a locus on 16q12.1 (rs3104767, P = 9.4 × 10−19, OR = 1.35) in a linkage disequilibrium block of 140 kb containing the 5′-end of TOX3 and the adjacent non-coding RNA BC034767.  相似文献   

14.

Background

Chronic kidney disease (CKD) is a significant public health problem that leads to end-stage renal disease (ESRD) with as many as 2 million people predicted to need therapy worldwide by 2010. Obesity is a risk factor for CKD and leptin, the obesity hormone, correlates with body fat mass and markers of renal function. A number of clinical and experimental studies have suggested a link between serum leptin and kidney disease. We hypothesised that variants in the leptin gene (LEP) may be associated with markers of CKD in indigenous black Africans.

Methodology/Principal Findings

Black South Africans of Xhosa (distinct cultural Bantu-speaking population) descent were recruited for the study and four common polymorphisms of the LEP (rs7799039, rs791620, rs2167270 and STS-U43653 [ENSSNP5824596]) were analysed for genotype and haplotype association with urine albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate (eGFR), Serum creatinine (Scr) and serum leptin level. In one of the four single nucleotide polymorphisms (SNPs) we examined, an association with the renal phenotypes was observed. Hypertensive subjects with the T allele (CT genotype) of the ENSSNP5824596 SNP had a significantly higher eGFR (p = 0.0141), and significantly lower Scr (p = 0.0137). This was confirmed by haplotype analysis. Also, the haplotype GAAC had a modest effect on urine albumin-to-creatinine ratio in normotensive subjects (p = 0.0482).

Conclusions/Significance

These results suggest that genetic variations of the LEP may be associated with phenotypes that are markers of CKD in black Africans.  相似文献   

15.
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.  相似文献   

16.

Objectives

The mechanisms of obesity associated reproductive complications remain poorly understood. Endometrial mesenchymal stem-cells are critical for cyclic renewal and uterine function. Recently, W5C5+ cells, with high clonogenicity, capable of producing endometrial stroma in vivo, have been described. We sought to investigate the abundance and cloning efficiency of W5C5+ and W5C5 endometrial cells in relation to Body Mass Index, age and reproductive outcome.

Design

W5C5+ and W5C5 cells were purified from mid-luteal endometrial biopsies (n = 54) by magnetic bead separation and subjected to in vitro colony-forming assays.

Results

First trimester pregnancy losses were significantly higher in obese subjects (n = 12) compared to overweight (n = 20) and subjects with normal Body Mass Index (n = 22) (P<0.05, P<0.01, respectively). W5C5+ cells (%) were significantly lower in obese subjects compared to subjects with normal Body Mass Index (P<0.05). W5C5+ cloning efficiency was significantly lower in obese subjects compared to overweight and subjects with normal Body Mass Index (P<0.05, respectively). W5C5 cloning efficiency was significantly lower in obese subjects compared to subjects with normal Body Mass Index (P<0.05). Body Mass Index was significantly negatively correlated with W5C5+ cloning efficiency and W5C5 cloning efficiency (P<0.01, respectively), and positively correlated with first trimester loss (P<0.01). We found no significant results with age (P>0.05).

Conclusions

Our observations suggest that the regenerative capacity and plasticity of the endometrium of obese women is suboptimal, which in turn may account for the increased risk of reproductive complications associated with obesity.  相似文献   

17.

Background and Aims

Glucagon-like peptide-1 (GLP-1) may provide beneficial cardiovascular effects, possibly due to enhanced myocardial energetic efficiency by increasing myocardial glucose uptake (MGU). We assessed the effects of GLP-1 on MGU in healthy subjects during normo- and hypoglycemia.

Materials and Methods

We included eighteen healthy men in two randomized, double-blinded, placebo-controlled cross-over studies. MGU was assessed with GLP-1 or saline infusion during pituitary-pancreatic normo- (plasma glucose (PG): 4.5 mM, n = 10) and hypoglycemic clamps (PG: 3.0 mM, n = 8) by positron emission tomography with 18fluoro-deoxy-glucose (18F-FDG) as tracer.

Results

In the normoglycemia study mean (± SD) age was 25±3 years, and BMI was 22.6±0.6 kg/m2 and in the hypoglycemia study the mean age was 23±2 years with a mean body mass index of 23±2 kg/m2. GLP-1 did not change MGU during normoglycemia (mean (+/− SD) 0.15+/−0.04 and 0.16+/−0.03 µmol/g/min, P = 0.46) or during hypoglycemia (0.16+/−0.03 and 0.13+/−0.04 µmol/g/min, P = 0.14). However, the effect of GLP-1 on MGU was negatively correlated to baseline MGU both during normo- and hypoglycemia, (P = 0.006, r2 = 0.64 and P = 0.018, r2 = 0.64, respectively) and changes in MGU correlated positively with the level of insulin resistance (HOMA 2IR) during hypoglycemia, P = 0.04, r2 = 0.54. GLP-1 mediated an increase in circulating glucagon levels at PG levels below 3.5 mM and increased glucose infusion rates during the hypoglycemia study. No differences in other circulating hormones or metabolites were found.

Conclusions

While GLP-1 does not affect overall MGU, GLP-1 induces changes in MGU dependent on baseline MGU such that GLP-1 increases MGU in subjects with low baseline MGU and decreases MGU in subjects with high baseline MGU. GLP-1 preserves MGU during hypoglycemia in insulin resistant subjects.ClinicalTrials.gov registration numbers: NCT00418288: (hypoglycemia) and NCT00256256: (normoglycemia).  相似文献   

18.

Background

Upon lipopolysaccharide (LPS) stimulation, activation of both the Toll-like receptor 4 (TLR4) and phosphoinositide 3-kinase (PI3K) pathways serves to balance proinflammatory and anti-inflammatory responses. Although the antagonist to TLR4 represents an emerging promising target for the treatment of sepsis; however, the role of the PI3K pathway under TLR4-null conditions is not well understood. This goal of this study was to investigate the effect of inhibition of PI3K on innate resistance to LPS toxicity in a murine model.

Results

The overall survival of the cohorts receiving intraperitoneal injections of 100, 500, or 1000 μg LPS from Escherichia coli serotype 026:B6 after 7 d was 100%, 10%, and 10%, respectively. In contrast, no mortality was noted after 500-μg LPS injection in Tlr4-/- mice. When the PI3K inhibitor LY294002 was injected (1 mg/25 g body weight) 1 h prior to the administration of LPS, the overall survival of the Tlr4-/- mice was 30%. In the Tlr4-/- mice, the LPS injection induced no NF-κB activation but an increased Akt phosphorylation in the lung and liver, when compared to that of the C57BL/6 mice. Injection of 500 μg LPS led to a significant induction in O2- detected by electron paramagnetic resonance (EPR) spin trapping spectroscopy in the lung and liver at 3 and 6 h in C57BL/6 but not Tlr4-/- mice. Addition of LY294002 only significantly increased the O2- level in the lung and liver of the Tlr4-/- mice but not in the C57BL/6 mice following 500-μg LPS injection. In addition, the serum IL-1β and IL-2 levels were more elevated in C57BL/6 mice than in Tlr4-/- mice. Notably, IL-1β and IL-2 were significantly increased in Tlr4-/- mice but not in the C57BL/6 mice when the PI3K pathway was inhibited by LY294002 prior to LPS injection.

Conclusions

In this study, we demonstrate that innate resistance to LPS toxicity in Tlr4-/- mice is impaired by inhibition of the PI3K pathway, with a corresponding increase in mortality and production of tissue O2- and inflammatory cytokines.  相似文献   

19.
Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min−1 under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n = 3), whereas that of maize straw can be described by the Mampel Power Law (n = 2). The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol−1, respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy.  相似文献   

20.

Background

Differences exist between treatment recommendations regarding the choice of metformin as first-line therapy for type 2 diabetes patients according to body mass index (BMI). This study compared the efficacy of metformin monotherapy among normal-weight, overweight, and obese patients with newly diagnosed type 2 diabetes.

Methods

In this prospective, multicenter, open-label study in China, patients aged 23–77 years were enrolled 1∶1:1 according to baseline BMI: normal-weight (BMI 18.5−23.9 kg/m2; n = 125); overweight (BMI 24.0−27.9 kg/m2; n = 122) or obese (BMI ≥28 kg/m2; n = 124). Extended-release metformin was administered for 16 weeks (500 mg/day, up-titrated weekly to a maximum 2,000 mg/day). The primary efficacy endpoint was the effect of baseline BMI on glycemic control with metformin monotherapy, measured as the change from baseline in glycosylated hemoglobin (HbA1c) at week 16 compared among BMI groups using ANCOVA. Other endpoints included comparisons of metformin’s effects on fasting plasma glucose (FPG), lipid levels and body weight.

Results

Mean HbA1c decreases at week 16, adjusted for baseline values, were –1.84%, –1.78% and –1.78% in normal-weight, overweight and obese patients, (P = 0.664); body weight decreased by 2.4%, 3.9% and 3.5%, respectively. FPG levels decreased similarly over time in all BMI groups (P = 0.461) and changes from baseline in high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) did not differ significantly among BMI groups at week 16 (P = 0.143 and 0.451, respectively).

Conclusions

Baseline BMI had no impact on glycemic control, weight change or other efficacy measures with metformin monotherapy. These data suggest that normal-weight type 2 diabetes patients would derive the same benefits from first-line treatment with metformin as overweight and obese patients, and are not at increased risk of excess weight loss.

Trial Registration

ClinicalTrials.gov NCT00778622  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号