首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies dissection propagation subject to internal pressure in a residually-stressed two-layer arterial model. The artery is assumed to be infinitely long, and the resultant plane strain problem is solved using the extended finite element method. The arterial layers are modelled using the anisotropic hyperelastic Holzapfel–Gasser–Ogden model, and the tissue damage due to tear propagation is described using a linear cohesive traction–separation law. Residual stress in the arterial wall is determined by an opening angle \(\alpha \) in a stress-free configuration. An initial tear is introduced within the artery which is subject to internal pressure. Quasi-static solutions are computed to determine the critical value of the pressure, at which the dissection starts to propagate. Our model shows that the dissection tends to propagate radially outwards. Interestingly, the critical pressure is higher for both very short and very long tears. The simulations also reveal that the inner wall buckles for longer tears, which is supported by clinical CT scans. In all simulated cases, the critical pressure is found to increase with the opening angle. In other words, residual stress acts to protect the artery against tear propagation. The effect of residual stress is more prominent when a tear is of intermediate length (\(\simeq \)90\(^\circ \) arc length). There is an intricate balance between tear length, wall buckling, fibre orientation, and residual stress that determines the tear propagation.  相似文献   

2.

We present a novel framework for investigating the role of vascular structure on arterial haemodynamics in large vessels, with a special focus on the human common carotid artery (CCA). The analysis is carried out by adopting a three-dimensional (3D) derived, fibre-reinforced, hyperelastic structural model, which is coupled with an axisymmetric, reduced order model describing blood flow. The vessel transmural pressure and lumen area are related via a Holzapfel–Ogden type of law, and the residual stresses along the thickness and length of the vessel are also accounted for. After a structural characterization of the adopted hyperelastic model, we investigate the link underlying the vascular wall response and blood-flow dynamics by comparing the proposed framework results against a popular tube law. The comparison shows that the behaviour of the model can be captured by the simpler linear surrogate only if a representative value of compliance is applied. Sobol’s multi-variable sensitivity analysis is then carried out in order to identify the extent to which the structural parameters have an impact on the CCA haemodynamics. In this case, the local pulse wave velocity (PWV) is used as index for representing the arterial transmission capacity of blood pressure waveforms. The sensitivity analysis suggests that some geometrical factors, such as the stress-free inner radius and opening angle, play a major role on the system’s haemodynamics. Subsequently, we quantified the differences in haemodynamic variables obtained from different virtual CCAs, tube laws and flow conditions. Although each artery presents a distinct vascular response, the differences obtained across different flow regimes are not significant. As expected, the linear tube law is unable to accurately capture all the haemodynamic features characterizing the current model. The findings from the sensitivity analysis are further confirmed by investigating the axial stretching effect on the CCA fluid dynamics. This factor does not seem to alter the pressure and flow waveforms. On the contrary, it is shown that, for an axially stretched vessel, the vascular wall exhibits an attenuation in absolute distension and an increase in circumferential stress, corroborating the findings of previous studies. This analysis shows that the new model offers a good balance between computational complexity and physics captured, making it an ideal framework for studies aiming to investigate the profound link between vascular mechanobiology and blood flow.

  相似文献   

3.
In this case report the occurrence of a catheter-induced coronary artery dissection is described. In our patient, angiography showed a mushroom-shaped exudate above the left main coronary artery. Intravascular ultrasound revealed a circular dissection with a huge false lumen connected to the true lumen by a small intimal tear. A brief review of the literature on catheter-induced coronary dissection is included. We believe that this case report provides a good illustration of the need for careful reviewing of indications for angiography. Although procedural risks are low, angiography remains an invasive diagnostic test with the potential to cause severe complications.  相似文献   

4.
It was found that bypass graft alone could achieve great effects in treating aortic dissection. In order to investigate the mechanical mechanism and the haemodynamic validity of the bypassing treatment for DeBakey III aortic dissection, patient-specific models of DeBakey III aortic dissection treated with different bypassing strategies were constructed. One of the bypassing strategies is bypassing between ascending aorta and abdominal aorta, and the other is bypassing between left subclavian artery and abdominal aorta. Numerical simulations under physiological flow conditions based on fluid–structure interaction were performed using finite element method. The results show that blood flow velocity, pressure and vessel wall displacement of false lumen are all reduced after bypassing. This phenomenon indicates that bypassing is an effective surgery for the treatment of DeBakey III aortic dissection. The effectiveness to cure through lumen is better when bypassing between left subclavian artery and abdominal aorta, while the effectiveness to cure blind lumen is better when bypassing between ascending aorta and abdominal aorta.  相似文献   

5.
Spontaneous dissection of the cervical internal carotid artery (sICAD) is a major cause of stroke in young adults. A tear in the inner part of the vessel wall triggers sICAD as it allows the blood to enter the wall and develop a transmural hematoma. The etiology of the tear is unknown but many patients with sICAD report an initiating trivial trauma. We thus hypothesised that the site of the tear might correspond with the location of maximal stress in the carotid wall. Carotid artery geometries segmented from magnetic resonance images of a healthy subject at different static head positions were used to define a path of motion and deformation of the right cervical internal carotid artery (ICA). Maximum head rotation to the left and rotation to the left combined with hyperextension of the neck were investigated using a structural finite element model. A role of the carotid sinus as a geometrically compliant feature accommodating extension of the artery is shown. At the extreme range of the movements, the geometrical compliance of the carotid sinus is limited and significant stress concentrations appear just distal to the sinus with peak stresses at the internal wall on the posterior side of the vessel following maximum head rotation and on the anteromedial portion of the vessel wall following rotation and hyperextension. Clinically, the location of sICAD initiation is 10–30 mm distal to the origin of the cervical ICA, which corresponds with the peak stress locations observed in the model, thus supporting trivial trauma from natural head movements as a possible initiating factor in sICAD.  相似文献   

6.
Kan  Xiaoxin  Ma  Tao  Lin  Jing  Wang  Lu  Dong  Zhihui  Xu  Xiao Yun 《Biomechanics and modeling in mechanobiology》2021,20(6):2247-2258

Thoracic endovascular aortic repair (TEVAR) has been accepted as the mainstream treatment for type B aortic dissection, but post-TEVAR biomechanical-related complications are still a major drawback. Unfortunately, the stent-graft (SG) configuration after implantation and biomechanical interactions between the SG and local aorta are usually unknown prior to a TEVAR procedure. The ability to obtain such information via personalised computational simulation would greatly assist clinicians in pre-surgical planning. In this study, a virtual SG deployment simulation framework was developed for the treatment for a complicated aortic dissection case. It incorporates patient-specific anatomical information based on pre-TEVAR CT angiographic images, details of the SG design and the mechanical properties of the stent wire, graft and dissected aorta. Hyperelastic material parameters for the aortic wall were determined based on uniaxial tensile testing performed on aortic tissue samples taken from type B aortic dissection patients. Pre-stress conditions of the aortic wall and the action of blood pressure were also accounted for. The simulated post-TEVAR configuration was compared with follow-up CT scans, demonstrating good agreement with mean deviations of 5.8% in local open area and 4.6 mm in stent strut position. Deployment of the SG increased the maximum principal stress by 24.30 kPa in the narrowed true lumen but reduced the stress by 31.38 kPa in the entry tear region where there was an aneurysmal expansion. Comparisons of simulation results with different levels of model complexity suggested that pre-stress of the aortic wall and blood pressure inside the SG should be included in order to accurately predict the deformation of the deployed SG.

  相似文献   

7.
An aortic dissection (AD) is a serious condition defined by the splitting of the arterial wall, thus generating a secondary lumen [the false lumen (FL)]. Its management, treatment and follow-up are clinical challenges due to the progressive aortic dilatation and potentially severe complications during follow-up. It is well known that the direction and rate of dilatation of the artery wall depend on haemodynamic parameters such as the local velocity profiles, intra-luminal pressures and resultant wall stresses. These factors act on the FL and true lumen, triggering remodelling and clinical worsening. In this study, we aimed to validate a computational fluid dynamic (CFD) tool for the haemodynamic characterisation of chronic (type B) ADs. We validated the numerical results, for several dissection geometries, with experimental data obtained from a previous in vitro study performed on idealised dissected physical models. We found a good correlation between CFD simulations and experimental measurements as long as the tear size was large enough so that the effect of the wall compliance was negligible.  相似文献   

8.
Pulsatile, three-dimensional hemodynamic forces influence thrombosis, and may dictate progression of aortic dissection. Intimal flap fenestration and blood pressure are clinically relevant variables in this pathology, yet their effects on dissection hemodynamics are poorly understood. The goal of this study was to characterize these effects on flow in dissection models to better guide interventions to prevent aneurysm formation and false lumen flow. Silicone models of aortic dissection with mobile intimal flap were fabricated based on patient images and installed in a flow loop with pulsatile flow. Flow fields were acquired via 4-dimensional flow MRI, allowing for quantification and visualization of relevant fluid mechanics. Pulsatile vortices and jet-like structures were observed at fenestrations immediately past the proximal entry tear. False lumen flow reversal was significantly reduced with the addition of fenestrations, from 19.2 ± 3.3% in two-tear dissections to 4.67 ± 1.5% and 4.87 ± 1.7% with each subsequent fenestration. In contrast, increasing pressure did not cause appreciable differences in flow rates, flow reversal, and vortex formation. Increasing the number of intermediate tears decreased flow reversal as compared to two-tear dissection, which may prevent false lumen thrombosis, promoting persistent false lumen flow. Vortices were noted to result from transluminal fluid motion at distal tear sites, which may lead to degeneration of the opposing wall. Increasing pressure did not affect measured flow patterns, but may contribute to stress concentrations in the aortic wall. The functional and anatomic assessment of disease with 4D MRI may aid in stratifying patient risk in this population.  相似文献   

9.

In order for computational fluid dynamics to provide quantitative parameters to aid in the clinical assessment of type B aortic dissection, the results must accurately mimic the hemodynamic environment within the aorta. The choice of inlet velocity profile (IVP) therefore is crucial; however, idealised profiles are often adopted, and the effect of IVP on hemodynamics in a dissected aorta is unclear. This study examined two scenarios with respect to the influence of IVP—using (a) patient-specific data in the form of a three-directional (3D), through-plane (TP) or flat IVP; and (b) non-patient-specific flow waveform. The results obtained from nine simulations using patient-specific data showed that all forms of IVP were able to reproduce global flow patterns as observed with 4D flow magnetic resonance imaging. Differences in maximum velocity and time-averaged wall shear stress near the primary entry tear were up to 3% and 6%, respectively, while pressure differences across the true and false lumen differed by up to 6%. More notable variations were found in regions of low wall shear stress when the primary entry tear was close to the left subclavian artery. The results obtained with non-patient-specific waveforms were markedly different. Throughout the aorta, a 25% reduction in stroke volume resulted in up to 28% and 35% reduction in velocity and wall shear stress, respectively, while the shape of flow waveform had a profound influence on the predicted pressure. The results of this study suggest that 3D, TP and flat IVPs all yield reasonably similar velocity and time-averaged wall shear stress results, but TP IVPs should be used where possible for better prediction of pressure. In the absence of patient-specific velocity data, effort should be made to acquire patient’s stroke volume and adjust the applied IVP accordingly.

  相似文献   

10.
Severe stenosis may cause critical flow and wall mechanical conditions related to artery fatigue, artery compression, and plaque rupture, which leads directly to heart attack and stroke. The exact mechanism involved is not well understood. In this paper a nonlinear three-dimensional thick-wall model with fluid-wall interactions is introduced to simulate blood flow in carotid arteries with stenosis and to quantify physiological conditions under which wall compression or even collapse may occur. The mechanical properties of the tube wall were selected to match a thick-wall stenosis model made of PVA hydrogel. The experimentally measured nonlinear stress-strain relationship is implemented in the computational model using an incremental linear elasticity approach. The Navier-Stokes equations are used for the fluid model. An incremental boundary iteration method is used to handle the fluid-wall interactions. Our results indicate that severe stenosis causes considerable compressive stress in the tube wall and critical flow conditions such as negative pressure, high shear stress, and flow separation which may be related to artery compression, plaque cap rupture, platelet activation, and thrombus formation. The stress distribution has a very localized pattern and both maximum tensile stress (five times higher than normal average stress) and maximum compressive stress occur inside the stenotic section. Wall deformation, flow rates, and true severities of the stenosis under different pressure conditions are calculated and compared with experimental measurements and reasonable agreement is found.  相似文献   

11.

The effect of repair techniques on the biomechanics of the aorta is poorly understood, resulting in significant levels of postoperative complications for patients worldwide. This study presents a computational analysis of the influence of Nitinol-based devices on the biomechanical performance of a healthy patient-specific human aorta. Simulations reveal that Nitinol stent-grafts stretch the artery wall so that collagen is stretched to a straightened high-stiffness configuration. The high-compliance regime (HCR) associated with low diastolic lumen pressure is eliminated, and the artery operates in a low-compliance regime (LCR) throughout the entire cardiac cycle. The slope of the lumen pressure–area curve for the LCR post-implantation is almost identical to that of the native vessel during systole. This negligible change from the native LCR slope occurs because the stent-graft increases its diameter from the crimped configuration during deployment so that it reaches a low-stiffness unloading plateau. The effective radial stiffness of the implant along this unloading plateau is negligible compared to the stiffness of the artery wall. Provided the Nitinol device unloads sufficiently during deployment to the unloading plateau, the degree of oversizing has a negligible effect on the pressure–area response of the vessel, as each device exerts approximately the same radial force, the slope of which is negligible compared to the LCR slope of the native artery. We show that 10% oversizing based on the observed diastolic diameter in the mid descending thoracic aorta results in a complete loss of contact between the device and the wall during systole, which could lead to an endoleak and stent migration. 20% oversizing reaches the Dacron enforced area limit (DEAL) during the pulse pressure and results in an effective zero-compliance in the later portion of systole.

  相似文献   

12.
The idea that embolized xylem vessels can be refilled while adjacent vessels remain under tension is difficult to accept if the cavitated vessels remain hydraulically connected to vessels under tension. A mechanism by which embolized conduits could be hydraulically isolated from adjacent conduits requires the existence of a non-zero contact angle and a flared opening into the bordered pit chamber such that a convex air-water interface forms at the entrance into the pit chamber. We measured the contact angle and pit chamber geometry for six species. The contact angle measured in the vessel lumen ranged between 42 degrees to 55 degrees, whereas the opening into the pit chamber ranged between 144 degrees and 157 degrees. If the surface properties within the pit chamber are similar to those in the lumen, a convex meniscus will form at the flared opening into the pit chamber. The maximum pressure difference between water in the lumen and gas in the pit chamber that could be stabilized by this interface was calculated to be within the range of 0.07 to 0.30 MPa.  相似文献   

13.
A theoretical model is presented for growth and remodeling in the developing embryonic heart. The model is a thick-walled tube composed of two layers of orthotropic pseudoelastic material. The analysis includes stress and strain dependent volumetric growth, with changes in material properties specified to reflect the evolving structure of the heart wall. For use in model validation, experimental measurements of ventricular opening angles are reported for 3–4-day old chick embryos under control and pressure overload conditions. Owing to changes in residual stress in the overloaded heart, the opening angle decreased from 31 ± 10° to −8 ± 12° (mean ± SD) within 12 h and then increased slightly. The opening angle at 12 h was significantly less than the control value. With an appropriate choice of parameters, the model yields reasonable agreement with these and other published opening angle data, as well as with temporal changes in lumen radius, wall thickness, epicardial strains, and pressure–volume curves during development before and after birth. Received: 26 November 2001 / Accepted: 21 December 2001  相似文献   

14.
A two-phase finite element model of the diastolic left ventricle   总被引:2,自引:0,他引:2  
A porous medium finite element model of the passive left ventricle is presented. The model is axisymmetric and allows for finite deformation, including torsion about the axis of symmetry. An anisotropic quasi-linear viscoelastic constitutive relation is implemented in the model. The model accounts for changing fibre orientation across the myocardial wall. During passive filling, the apex rotates in a clockwise direction relative to the base for an observer looking from apex to base. Within an intraventricular pressure range of 0-3 kPa the rotation angle of all nodes remained below 0.1 rad. Diastolic viscoelasticity of myocardial tissue is shown to reduce transmural differences of preload-induced sarcomere stretch and to generate residual stresses in an unloaded ventricular wall, consistent with the observation of opening angles seen when the heart is slit open. It is shown that the ventricular model stiffens following an increase of the intracoronary blood volume. At a given left ventricular volume, left ventricular pressure increases from 1.5 to 2.0 kPa when raising the intracoronary blood volume from 9 to 14 ml (100 g)-1 left ventricle.  相似文献   

15.
Thoracic endovascular repair (TEVAR) has recently been established as the preferred treatment option for complicated type B dissection. This procedure involves covering the primary entry tear to stimulate aortic remodelling and promote false lumen thrombosis thereby restoring true lumen flow. However, complications associated with incomplete false lumen thrombosis, such as aortic dilatation and stent graft induced new entry tears, can arise after TEVAR. This study presents the application and validation of a recently developed mathematical model for patient-specific prediction of thrombus formation and growth under physiologically realistic flow conditions. The model predicts thrombosis through the evaluation of shear rates, fluid residence time and platelet distribution, based on convection-diffusion-reaction transport equations. The model was applied to 3 type B aortic dissection patients: two TEVAR cases showing complete and incomplete false lumen thrombosis respectively, and one medically treated dissection with no signs of thrombosis. Predicted thrombus growth over time was validated against follow-up CT scans, showing good agreement with in vivo data in all cases with a maximum difference between predicted and measured false lumen reduction below 8%. Our results demonstrate that TEVAR-induced thrombus formation in type B aortic dissection can be predicted based on patient-specific anatomy and physiologically realistic boundary conditions. Our model can be used to identify anatomical or stent graft related factors that are associated with incomplete false lumen thrombosis following TEVAR, which may help clinicians develop personalised treatment plans for dissection patients in the future.  相似文献   

16.
An experimental investigation was carried out to acquire an understanding of local pressure changes and flow along the main lumen of arterial branch models similar to the femoral artery of man with three different branch angles (30, 60, and 90 deg) and side branch to the main lumen diameter ratio of 0.4. Effects of branch to main lumen flow rate ratios and physiological Reynolds numbers were found to be significant on the local pressure changes, while that of branch angle was also found to be important. The flow visualization study revealed that the flow separated in the main lumen near the branch junction when the pressure rise coefficient along the main lumen was above a critical value (i.e., 0.35 - 0.46), which was observed to be a function of the Reynolds number. The critical value of the branch to main lumen flow rate ratio was found to be about 0.38 - 0.44 also depending on the Reynolds number. Time averaged pressure distributions for pulsatile flow were similar in trend to steady flow values although they differed somewhat in detail in the main lumen in the branch region.  相似文献   

17.
Aortic dissection is a disease whereby an injury in the wall of the aorta leads to the creation of a true lumen and a false lumen separated by an intimal flap which may contain multiple communicating tears between the lumina. It has a high associated morbidity and mortality, but at present, the timing of surgical intervention for stable type B dissections remains an area of debate. Detailed knowledge of haemodynamics may yield greater insight into the long-term outcomes for dissection patients by providing a greater understanding of pressures, wall shear stress and velocities in and around the dissection. In this paper, we aim to gather further insight into the complex haemodynamics in aortic dissection using medical imaging and computational fluid dynamics modelling. Towards this end, several computer models of the aorta of a patient presenting with an acute Stanford type B dissection were created whereby morphometric parameters related to the dissection septum were altered, such as removal of the septum, and the variation of the number of connecting tears between the lumina. Patient-specific flow data acquired using 2D PC-MRI in the ascending aorta were used to set the inflow boundary condition. Coupled zero-dimensional (Windkessel) models representing the distal vasculature were used to define the outlet boundary conditions and tuned to match 2D PC-MRI flow data acquired in the descending aorta. Haemodynamics in the dissected aorta were compared to those in an equivalent ‘healthy aorta’, created by virtually removing the intimal flap (septum). Local regions of increased velocity, pressure, wall shear stress and alterations in flow distribution were noted, particularly in the narrow true lumen and around the primary entry tear. The computed flow patterns compared favourably with those obtained using 4D PC-MRI. A lumped-parameter heart model was subsequently used to show that in this case there was an estimated 14 % increase in left ventricular stroke work with the onset of dissection. Finally, the effect of secondary connecting tears (i.e. those excluding the primary entry and exit tears) was also studied, revealing significant haemodynamic changes when no secondary tears are included in the model, particularly in the true lumen where increases in flow over \(+200\,\%\) and drops in peak pressure of 18 % were observed.  相似文献   

18.
The detailed mechanical properties of various layers of the coronary artery are important for understanding the function of the vessel. The present article is focused on the determination of the incremental modulus in different layers and directions in the neighborhood of the in vivo state. The incremental modulus can be defined for any material subjected to a large deformation if small perturbations in strain lead to small perturbations of stresses in a linear fashion. This analysis was applied to the porcine coronary artery, which was treated as a two-layered structure consisting of an inner intima-media layer and an outer adventitia layer. We adopted a theory based on small-perturbation experiments at homeostatic conditions for determination of incremental moduli in circumferential, axial, and cross directions in the two layers. The experiments were based on inflation and axial stretch. We demonstrate that under homeostatic conditions the incremental moduli are layer- and direction dependent. The incremental modulus is highest in the circumferential direction. Furthermore, in the circumferential direction, the media is stiffer than the whole wall, which is stiffer than the adventitia. In the axial direction, the adventitia is stiffer than the intact wall, which is stiffer than the media. Hence, the coronary artery must be treated as a composite, nonisotropic body. The data acquire physiological relevance in relation to coronary artery health and disease.  相似文献   

19.
Factors in the propagation of aortic dissections in canine thoracic aortas   总被引:1,自引:0,他引:1  
Factors were examined which altered the propagation of aortic dissections in canine aortas. Thoracic aortas were removed from sacrificed dogs from the distal end of the arch to the diaphragm. An intimal tear was created at the proximal end of the aorta. The dissection was propagated using a pulsatile pressure system with no flow. The aorta was perfused with a dilute black paint solution, which allowed both video monitoring of the extension of the dissection and measurement of the dissection rate. The dependence of the dissection rate on the variables peak pressure, (dP/dt)max and intimal tear depth was examined. The dissection rate was found to be dependent on (dP/dt)max (p less than 0.005) and the intimal tear depth, expressed as a percentage of wall thickness (p less than 0.01), but not on the peak pressure or intimal tear length. The equation relating the significant variables was log (dissection rate) = (-0.034) X % tear depth +(1.89 +/- 0.56) X (dP/dt)max -(4.3 +/- 1.8); r = 78. Thus a higher (dP/dt)max was associated with a more rapid dissection rate and a deeper intimal tear was associated with a slower dissection rate.  相似文献   

20.
目的:探讨长期四氢生物喋呤(BH4)治疗对自发性高血压大鼠(SHR)血管形态及血管力学性质的影响;方法:选用4周龄雄性SHR36只,随机分为实验组和对照组,每组18只。实验组每周2次腹腔注射BH420mg/kg,对照组注射等容量生理盐水,于实验第4、16和26周龄时各取6只测量动脉收缩压(SBP),并使用计算机图像分析的方法分别测量主动脉血管零应力状态张开角、压力-直径关系及肠系膜动脉血管的壁/腔比值。结果:至BH4治疗后的第16和26周龄,SHR的SBP明显降低(P〈0.01);实验组SHR胸主动脉张开角显著减小(P〈0.01),压力-直径(P-D)关系曲线上移;实验组肠系膜动脉三级分支血管壁/腔(W/L)值减小(P〈0.05)。结论:BH4可以减弱由于长期高血压所导致的血管肥厚和管腔狭窄,恢复血管弹性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号