首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
同一组织中的细胞往往具有类似的结构和功能,然而通过对单个细胞进行测序分析后,发现每个细胞都具有一定异质性.单细胞全基因组扩增技术是进行单细胞测序的前提,该技术可用于揭示单细胞基因组结构差异,同时在肿瘤研究、发育生物学、微生物学等研究中发挥重要作用,并成为生命科学研究技术的热点之一.单细胞全基因组扩增技术的难点在于单细胞的分离和全基因组的扩增.本文介绍了单细胞全基因组扩增技术中常用的单细胞分离技术和单细胞全基因组扩增技术,并对各技术间的优缺点进行比较,同时着重讨论该技术在肿瘤研究、发育生物学和微生物学研究中的应用.  相似文献   

2.

Background

Single-cell genome sequencing has the potential to allow the in-depth exploration of the vast genetic diversity found in uncultured microbes. We used the marine cyanobacterium Prochlorococcus as a model system for addressing important challenges facing high-throughput whole genome amplification (WGA) and complete genome sequencing of individual cells.

Methodology/Principal Findings

We describe a pipeline that enables single-cell WGA on hundreds of cells at a time while virtually eliminating non-target DNA from the reactions. We further developed a post-amplification normalization procedure that mitigates extreme variations in sequencing coverage associated with multiple displacement amplification (MDA), and demonstrated that the procedure increased sequencing efficiency and facilitated genome assembly. We report genome recovery as high as 99.6% with reference-guided assembly, and 95% with de novo assembly starting from a single cell. We also analyzed the impact of chimera formation during MDA on de novo assembly, and discuss strategies to minimize the presence of incorrectly joined regions in contigs.

Conclusions/Significance

The methods describe in this paper will be useful for sequencing genomes of individual cells from a variety of samples.  相似文献   

3.
Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74%) of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information.  相似文献   

4.
Abstract: We describe a method for rapidly amplifying whole genomes via a Phi29 DNA polymerase-mediated strand displacement reaction (SDR). Genomic amplification products derived from the SDR reaction resulted in high quantities of DNA suitable for polymerase chain reaction (PCR) amplification and sequencing of mitochondrial genomes. Control region sequences of DNA derived directly from PCR amplicons of extracted DNA were identical to those derived from PCR amplification of SDR genomic DNA. Effective SDR amplification and subsequent sequencing was successful across tissues sources ranging in age from 1 year to 19 years. Strand replacement reaction genomic amplification offers a means of obtaining large quantities of DNA from small amounts of tissue.  相似文献   

5.
Whole Genome Amplification (WGA) is an important process to increase limiting amounts of genomic DNA prior to genomic analyses. Current amplification methods based on primer extension or strand displacement principles employ primers of partially or totally random sequence. In this paper, we present a method using Genetic Algorithms to optimize a single primer design to be used in a primer extension reaction to achieve unbiased WGA. Computational simulation and prediction of a suitable primer proposed two candidates NYP6-1 (ATCTCA) and NYP6-2 (TGAGAT). NYP6-1 amplified to a maximum length of 2537 base pairs (bp), had genome coverage of approximately 45.62%, with an average of 493 and variance of 163 amplicons per 1 megabasepairs (Mb). NYP6-2 amplified to a maximum length of 2926 bp and covered 54.35% of the genome with an average of 579 and a variance of 191 amplicons per Mb. In contrast, the original primer used in Degenerate Oligonucleotide-Primed PCR (DOP-PCR) had coverage of 20.93%, an average of 74 and variance of 188 amplicons per Mb when extended up to a length of 2000 bp. Successful WGA of miniscule amounts of genomic DNA requires the amplification method used to resolve issues on efficiency, accurate representation of the whole genome and ability to degraded DNA. The sequence NYP6-2 discovered using our method can be confidently used in a primer extension based protocol to perform quantitatively unbiased WGA.  相似文献   

6.
Single-cell sequencing is emerging as an important tool for studies of genomic heterogeneity. Whole genome amplification (WGA) is a key step in single-cell sequencing workflows and a multitude of methods have been introduced. Here, we compare three state-of-the-art methods on both bulk and single-cell samples of E. coli DNA: Multiple Displacement Amplification (MDA), Multiple Annealing and Looping Based Amplification Cycles (MALBAC), and the PicoPLEX single-cell WGA kit (NEB-WGA). We considered the effects of reaction gain on coverage uniformity, error rates and the level of background contamination. We compared the suitability of the different WGA methods for the detection of copy-number variations, for the detection of single-nucleotide polymorphisms and for de-novo genome assembly. No single method performed best across all criteria and significant differences in characteristics were observed; the choice of which amplifier to use will depend strongly on the details of the type of question being asked in any given experiment.  相似文献   

7.
Bst DNA聚合酶大片段作为一种常用的DNA聚合酶,因其独特的特点:能引发链置换反应、高保真、耐高温等,而成为一种重要的DNA多重置换扩增酶。目的:为减少成本,设计一种高产,方便且扩增活性高的Bst DNA聚合酶大片段表达体系;探究该酶应用于胃癌石蜡包埋组织基因组DNA的扩增条件。方法:采用p TWIN1质粒作为载体克隆表达Bst DNA聚合酶大片段,应用几丁质亲和层析柱纯化该酶,使用该酶对人类基因组DNA进行不同温度下扩增,探究其最适反应温度,并据此对胃癌石蜡包埋组织基因组DNA进行扩增。结果:由此得到的Bst DNA聚合酶大片段能运用于胃癌石蜡包埋组织基因组DNA的扩增,扩增效率可达200倍,并能应用于a CGH芯片。结论:扩增得到保真性高,覆盖基因组范围大的DNA扩增产物。该应用与a CGH结合,使得对少量的癌症石蜡包埋组织DNA样本进行全基因组扩增,并进行其基因拷贝数变异研究成为可能。  相似文献   

8.
Microdroplets are an effective platform for segregating individual cells and amplifying DNA. However, a key challenge is to recover the contents of individual droplets for downstream analysis. This paper offers a method for embedding cells in alginate microspheres and performing multiple serial operations on the isolated cells. Rhodobacter sphaeroides cells were diluted in alginate polymer and sprayed into microdroplets using a fingertip aerosol sprayer. The encapsulated cells were lysed and subjected either to conventional PCR, or whole genome amplification using either multiple displacement amplification (MDA) or a two-step PCR protocol. Microscopic examination after PCR showed that the lumen of the occupied microspheres contained fluorescently stained DNA product, but multiple displacement amplification with phi29 produced only a small number of polymerase colonies. The 2-step WGA protocol was successful in generating fluorescent material, and quantitative PCR from DNA extracted from aliquots of microspheres suggested that the copy number inside the microspheres was amplified up to 3 orders of magnitude. Microspheres containing fluorescent material were sorted by a dilution series and screened with a fluorescent plate reader to identify single microspheres. The DNA was extracted from individual isolates, re-amplified with full-length sequencing adapters, and then a single isolate was sequenced using the Illumina MiSeq platform. After filtering the reads, the only sequences that collectively matched a genome in the NCBI nucleotide database belonged to R. sphaeroides. This demonstrated that sequencing-ready DNA could be generated from the contents of a single microsphere without culturing. However, the 2-step WGA strategy showed limitations in terms of low genome coverage and an uneven frequency distribution of reads across the genome. This paper offers a simple method for embedding cells in alginate microspheres and performing PCR on isolated cells in common bulk reactions, although further work must be done to improve the amplification coverage of single genomes.  相似文献   

9.
10.
针对SARS冠状病毒的分子生物学检测是控制SARS流行的关键环节。为评价全基因组扩增对SARS微量样本检测的影响 ,采用 6 mer随机引物反转录 ,用加接头的随机引物合成第二链 ,再以接头序列为引物扩增并掺入荧光标记 ,最后与带有 70 mer探针的基因芯片杂交。此非特异方法基本覆盖了样本中的全部DNA ,结果发现SARS冠状病毒全基因组的扩增效果对基因芯片杂交结果的均匀性有较大影响 ,PCR循环次数增多会导致扩增均匀性的降低。分析了不同的引物对全基因组扩增均匀性的影响 ,探讨了全基因组扩增策略的缺陷。  相似文献   

11.

Background

Identification of pathogen DNA from archaeological human remains is a powerful tool in demonstrating that the infectious disease existed in the past. However, it is very difficult to detect trace amounts of DNA remnants attached to the human skeleton, especially from those buried in a humid atmosphere with a relatively high environmental temperature such as in Asia.

Methodology/Principal Findings

Here we demonstrate Mycobacterium leprae DNA from archaeological skeletal remains in Japan by polymerase chain reaction, DNA sequencing and single nucleotide polymorphism (SNP) analysis. In addition, we have established a highly sensitive method of detecting DNA using a combination of whole genome amplification and polymerase chain reaction, or WGA-PCR, which provides superior sensitivity and specificity in detecting DNA from trace amounts of skeletal materials.

Conclusion/Significance

We have detected M. leprae DNA in archaeological skeletal remains for the first time in the Far East. Its SNP genotype corresponded to type 1; the first detected case worldwide of ancient M. leprae DNA. We also developed a highly sensitive method to detect ancient DNA by utilizing whole genome amplification.  相似文献   

12.
Whole genome amplification (WGA) is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA), using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL) within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.  相似文献   

13.
Circulating tumor cells (CTCs), shed from primary tumors and disseminated into peripheral blood, are playing a major role in metastasis. Even after isolation of CTCs from blood, the target cells are mixed with a population of other cell types. Here, we propose a new method for analyses of cell mixture at the single-cell level using a microfluidic device that contains arrayed electroactive microwells. Dielectrophoretic (DEP) force, induced by the electrodes patterned on the bottom surface of the microwells, allows efficient trapping and stable positioning of single cells for high-throughput biochemical analyses. We demonstrated that various on-chip analyses including immunostaining, viability/apoptosis assay and fluorescent in situ hybridization (FISH) at the single-cell level could be conducted just by applying specific reagents for each assay. Our simple method should greatly help discrimination and analysis of rare cancer cells among a population of blood cells.  相似文献   

14.
Side population (SP) cells in primary tumors and cell lines are a small cell population, but they are known to enrich cancer stem cells (CSCs). In this study, we isolated SP cells from the human breast cancer cell line MCF7 as a model for studying CSCs. Compared with non-SP cells, MCF7 SP cells had higher mammosphere-formation efficiency (MFE) in vitro and greater tumorigenicity in vivo, suggesting that MCF7 SP cells enrich CSCs. We first directly compared the gene expression profile of SP and non-SP cells from MCF7 cell line. Comparing the expression signature of SP to non-SP cells, we identified 753 differentially expressed genes (DEGs). Using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified multiple pathways that were aberrantly regulated in SP compared with non-SP cells. Several pathways, including cell junction and apoptosis, play important roles in breast CSC function. This study demonstrates that combining global gene expression analysis with detailed annotated pathway resources can enhance our understanding of the critical pathways that regulate breast CSCs.  相似文献   

15.
Several whole genome amplification strategies have been developed to preamplify the entire genome from minimal amounts of DNA for subsequent molecular genetic analysis. However, none of these techniques has proven to amplify long products from very low (nanogram or picogram) quantities of genomic DNA. Here we report a new whole genome amplification protocol using a degenerate primer (DOP-PCR) that generates products up to about 10 kb in length from less than 1 ng genomic template DNA. This new protocol (LL-DOP-PCR) allows in the subsequent PCR the specific amplification, with high fidelity, of DNA fragments that are more than 1 kb in length. LL-DOP-PCR provides significantly better coverage for microsatellites and unique sequences in comparison to a conventional DOP-PCR method.  相似文献   

16.
Cancer research is striving toward new frontiers of assigning the correct personalized drug(s) to a given patient. However, extensive tumor heterogeneity poses a major obstacle. Tumors of the same type often respond differently to therapy, due to patient‐specific molecular aberrations and/or untargeted tumor subpopulations. It is frequently not possible to determine a priori which patients will respond to a certain therapy or how an efficient patient‐specific combined therapy should be designed. Large‐scale datasets have been growing at an accelerated pace and various technologies and analytical tools for single cell and bulk level analyses are being developed to extract significant individualized signals from such heterogeneous data. However, personalized therapies that dramatically alter the course of the disease remain scarce, and most tumors still respond poorly to medical care. In this review, the basic concepts of bulk and single cell approaches are discussed, as well as their emerging role in individualized designs of drug therapies, including the advantages and limitations of their applications in personalized medicine.  相似文献   

17.
Equal distribution of chromosomes between the two daughter cells during cell division is a prerequisite for guaranteeing genetic stability 1. Inaccuracies during chromosome separation are a hallmark of malignancy and associated with progressive disease 2-4. The spindle assembly checkpoint (SAC) is a mitotic surveillance mechanism that holds back cells at metaphase until every single chromosome has established a stable bipolar attachment to the mitotic spindle1. The SAC exerts its function by interference with the activating APC/C subunit Cdc20 to block proteolysis of securin and cyclin B and thus chromosome separation and mitotic exit. Improper attachment of chromosomes prevents silencing of SAC signaling and causes continued inhibition of APC/CCdc20 until the problem is solved to avoid chromosome missegregation, aneuploidy and malignant growths1.Most studies that addressed the influence of improper chromosomal attachment on APC/C-dependent proteolysis took advantage of spindle disruption using depolymerizing or microtubule-stabilizing drugs to interfere with chromosomal attachment to microtubules. Since interference with microtubule kinetics can affect the transport and localization of critical regulators, these procedures bear a risk of inducing artificial effects 5.To study how the SAC interferes with APC/C-dependent proteolysis of cyclin B during mitosis in unperturbed cell populations, we established a histone H2-GFP-based system which allowed the simultaneous monitoring of metaphase alignment of mitotic chromosomes and proteolysis of cyclin B 6.To depict proteolytic profiles, we generated a chimeric cyclin B reporter molecule with a C-terminal SNAP moiety 6 (Figure 1). In a self-labeling reaction, the SNAP-moiety is able to form covalent bonds with alkylguanine-carriers (SNAP substrate) 7,8 (Figure 1). SNAP substrate molecules are readily available and carry a broad spectrum of different fluorochromes. Chimeric cyclin B-SNAP molecules become labeled upon addition of the membrane-permeable SNAP substrate to the growth medium 7 (Figure 1). Following the labeling reaction, the cyclin B-SNAP fluorescence intensity drops in a pulse-chase reaction-like manner and fluorescence intensities reflect levels of cyclin B degradation 6 (Figure 1). Our system facilitates the monitoring of mitotic APC/C-dependent proteolysis in large numbers of cells (or several cell populations) in parallel. Thereby, the system may be a valuable tool to identify agents/small molecules that are able to interfere with proteolytic activity at the metaphase to anaphase transition. Moreover, as synthesis of cyclin B during mitosis has recently been suggested as an important mechanism in fostering a mitotic block in mice and humans by keeping cyclin B expression levels stable 9,10, this system enabled us to analyze cyclin B proteolysis as one element of a balanced equilibrium 6.  相似文献   

18.
目的建立RT-SHIV病毒全长rt基因单拷贝PCR扩增方法,用于HIV-1 rt基因体内遗传与变异研究。方法 Oligo软件设计RT-SHIV rt基因特异性扩增引物,梯度稀释方法进行特异性和灵敏度筛选,进而优化退火温度和PCR反应最佳循环数等条件,建立rt基因PCR扩增方法;在此基础上将模板进行有限稀释,摸索rt基因单拷贝PCR扩增条件;使用该方法扩增感染猴体内RT-SHIV病毒rt基因,BioEdit软件进行基因序列分析。结果筛选得到一组巢式PCR引物,成功建立了RT-SHIV rt基因PCR扩增方法;当模板浓度为100 copies/μL时,扩增产物为单拷贝序列;测序结果显示RT-SHIV感染猴d266和d294血浆样本分别存在1处和6处氨基酸突变。结论本研究建立的全长rt基因单拷贝PCR扩增方法特异性好、灵敏度高、重复性强,可以应用于各类RT-SHIV病毒的全长rt基因分析。  相似文献   

19.
We present methods to construct phylogenetic models of tumor progression at the cellular level that include copy number changes at the scale of single genes, entire chromosomes, and the whole genome. The methods are designed for data collected by fluorescence in situ hybridization (FISH), an experimental technique especially well suited to characterizing intratumor heterogeneity using counts of probes to genetic regions frequently gained or lost in tumor development. Here, we develop new provably optimal methods for computing an edit distance between the copy number states of two cells given evolution by copy number changes of single probes, all probes on a chromosome, or all probes in the genome. We then apply this theory to develop a practical heuristic algorithm, implemented in publicly available software, for inferring tumor phylogenies on data from potentially hundreds of single cells by this evolutionary model. We demonstrate and validate the methods on simulated data and published FISH data from cervical cancers and breast cancers. Our computational experiments show that the new model and algorithm lead to more parsimonious trees than prior methods for single-tumor phylogenetics and to improved performance on various classification tasks, such as distinguishing primary tumors from metastases obtained from the same patient population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号