首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Cellular immunity plays a crucial role in cytomegalovirus (CMV) infection and substantial populations of CMV-specific T cells accumulate throughout life. However, although CMV infection occurs during childhood, relatively little is know about the typical quantity and quality of T cell responses in pediatric populations.

Methods

One thousand and thirty-six people (Male/Female = 594/442, Age: 0–19 yr.; 959 subjects, 20–29 yr.; 77 subjects) were examined for HLA typing. All of 1036 subjects were tested for HLA-A2 antigen. Of 1036 subjects, 887 were also tested for HLA-A23, 24 antigens. In addition, 50 elderly people (Male/Female = 11/39, Age: 60–92 yr.) were also tested for HLA-A2 antigen. We analyzed the CD8+ T cell responses to CMV, comparing these to responses in children and young. The frequencies, phenotype and function CD8+ T cells for two imunodominant epitopes from pp65 were measured.

Results

We observed consistently high frequency and phenotypically "mature" (CD27 low, CD28 low, CD45RA+) CMV-specific CD8+ T cell responses in children, including those studied in the first year of life. These CD8+ T cells retained functionality across all age groups, and showed evidence of memory "inflation" only in later adult life.

Conclusion

CMV consistently elicits a very strong CD8+ T cell response in infants and large pools of CMV specific CD8+ T cells are maintained throughout childhood. The presence of CMV may considerably mould the CD8+ T cell compartment over time, but the relative frequencies of CMV-specific cells do not show the evidence of a population-level increase during childhood and adulthood. This contrast with the marked expansion ("inflation") of such CD8+ T cells in older adults. This study indicates that large scale analysis of peptide specific T cell responses in infants is readily possible. The robust nature of the responses observed suggests vaccine strategies aimed at priming and boosting CD8+ T cells against major pathogens (including HIV, malaria and CMV itself) could be successful in this age-group.  相似文献   

3.
We examined the hypothesis that a failure of the immune system to eradicate tumors is due to the immunosuppressive environment created by the growing tumor, which is influenced by the site of tumor growth. We demonstrated that T cell responses to a bystander Ag in mice were suppressed by a growing CT26 tumor. T cells purified from the growing tumor expressed mRNA for IL-10, TGF-beta, and Foxp3. Intracellular cytokine staining revealed a high frequency of IL-10-secreting macrophages, dendritic cells, and CD4+ and CD8+ T cells infiltrating the tumor. In contrast, T cell IFN-gamma production was weak and CD8+ CTL responses were undetectable in mice with CT26 lung metastases and weak and transient following s.c. injection of CT26 cells, but were enhanced in the presence of anti-IL-10 and anti-TGF-beta. Consistent with this, removal of CD8+ T cells abrogated CTL responses and promoted progression of the s.c. tumor. However, in the lung model, depletion of CD8+ T cells significantly reduced the tumor burden. Furthermore, depletion of CD4+ or CD25+ T cells in vivo reduced tumor burden in s.c. and lung models, and this was associated with significantly enhanced IFN-gamma production by CD8+ T cells. These findings suggest that tumor growth facilitates the induction or recruitment of CD4+ regulatory T cells that secrete IL-10 and TGF-beta and suppress effector CD8+ T cell responses. However, CD8+ T regulatory cells expressing IL-10 and TGF-beta are also recruited or activated by the immunosuppressive environment of the lung, where they may suppress the induction of antitumor immunity.  相似文献   

4.
Virus-specific CD4+ T cell help and CD8+ cytotoxic T cell responses are critical for maintenance of effective immunity in chronic viral infections. The importance of CD4+ T cells has been documented in HIV infection. To investigate whether a stronger CD4+ T cell response can be induced by modifications to enhance the T1 epitope, the first CD4+ T cell epitope discovered in HIV-1-gp120, we developed a T1-specific CD4+ T cell line from a healthy volunteer immunized with a canarypox vector expressing gp120 and boosted with recombinant gp120. This T1-specific CD4+ T cell line was restricted to DR13, which is common in U.S. Caucasians and African-Americans and very frequent in Africans. Peptides with certain amino acid substitutions in key positions induced enhanced specific CD4+ T cell proliferative responses at lower peptide concentration than the original epitope. This relatively conserved CD4 epitope improved by the epitope enhancement strategy could be a component of a more effective second generation vaccine construct for HIV infection.  相似文献   

5.
Although the immune system has the potential to protect against malignancies, many individuals with cancer are immunosuppressed. Myeloid-derived suppressor cells (MDSC) are elevated in many patients and animals with tumors, and contribute to immune suppression by blocking CD4(+) and CD8(+) T cell activation. Using the spontaneously metastatic 4T1 mouse mammary carcinoma, we now demonstrate that cross-talk between MDSC and macrophages further subverts tumor immunity by increasing MDSC production of IL-10, and by decreasing macrophage production of IL-12. Cross-talk between MDSC and macrophages requires cell-cell contact, and the IL-12 decrease is dependent on MDSC production of IL-10. Treatment with the chemotherapeutic drug gemcitabine, which reduces MDSC, promotes rejection of established metastatic disease in IL-4Ralpha(-/-) mice that produce M1 macrophages by allowing T cell activation, by maintaining macrophage production of IL-12, and by preventing increased production of IL-10. Therefore, MDSC impair tumor immunity by suppressing T cell activation and by interacting with macrophages to increase IL-10 and decrease IL-12 production, thereby promoting a tumor-promoting type 2 response, a process that can be partially reversed by gemcitabine.  相似文献   

6.
Neonates are thought to mount less vigorous adaptive immune responses than adults to antigens and infectious agents. This concept has led to a delay in the administration of many currently available vaccines until late infancy or early childhood. It has recently been shown that vaccines composed of plasmid DNA can induce both humoral and cell-mediated antimicrobial immunity when administered within hours of birth. In most of these studies, immune responses were measured weeks or months after the initial vaccination, and it is therefore questionable whether the observed responses were actually the result of priming of splenocytes within the neonatal period. Here we show that DNA vaccination at birth results in the rapid induction of antigen-specific CD8(+) T cells within neonatal life. Analyses of T-cell effector functions critical for the resolution of many viral infections revealed that neonatal and adult CD8(+) T cells produce similar arrays of cytokines. Furthermore, the avidities of neonatal and adult CD8(+) T cells for peptide and the rapidity with which they upregulate cytokine production after recall encounters with antigen are similar. Protective immunity against the arenavirus lymphocytic choriomeningitis virus, which is mediated by CD8(+) cytotoxic T cells, is also rapidly acquired within the neonatal period. Collectively these data imply that, at least in the case of CD8(+) T cells, neonates are not as immunodeficient as previously supposed and that DNA vaccines may be an effective and safe means of providing critical cell-mediated antiviral immunity extremely early in life.  相似文献   

7.
CD103+ and CD11b+ populations of CD11c+MHCIIhi murine dendritic cells (DCs) have been shown to carry antigens from the lung through the afferent lymphatics to mediastinal lymph nodes (MLN). We compared the responses of these two DC populations in neonatal and adult mice following intranasal infection with respiratory syncytial virus. The response in neonates was dominated by functionally-limited CD103+ DCs, while CD11b+ DCs were diminished in both number and function compared to adults. Infecting mice at intervals through the first three weeks of life revealed an evolution in DC phenotype and function during early life. Using TCR transgenic T cells with two different specificities to measure the ability of CD103+ DC to induce epitope-specific CD8+ T cell responses, we found that neonatal CD103+ DCs stimulate proliferation in a pattern distinct from adult CD103+ DCs. Blocking CD28-mediated costimulatory signals during adult infection demonstrated that signals from this costimulatory pathway influence the hierarchy of the CD8+ T cell response to RSV, suggesting that limited costimulation provided by neonatal CD103+ DCs is one mechanism whereby neonates generate a distinct CD8+ T cell response from that of adults.  相似文献   

8.
A protective role for CD8+ T cells during viral infections is generally accepted, but little is known about how CD8+ T cell responses develop during primary infections in infants, their efficacy, and how memory is established after viral clearance. We studied CD8+ T cell responses in bronchoalveolar lavage (BAL) samples and blood of infants with a severe primary respiratory syncytial virus (RSV) infection. RSV-specific CD8+ T cells with an activated effector cell phenotype: CD27+CD28+CD45RO+CCR7-CD38+HLA-DR+Granzyme B+CD127- could be identified in BAL and blood. A high proportion of these CD8+ T cells proliferated and functionally responded upon in vitro stimulation with RSV Ag. Thus, despite the very young age of the patients, a robust systemic virus-specific CD8+ T cell response was elicited against a localized respiratory infection. RSV-specific T cell numbers as well as the total number of activated effector type CD8+ T cells peaked in blood around day 9-12 after the onset of primary symptoms, i.e., at the time of recovery. The lack of a correlation between RSV-specific T cell numbers and parameters of disease severity make a prominent role in immune pathology unlikely, in contrast the T cells might be involved in the recovery process.  相似文献   

9.
The goal of infant immunization against viral infection is to develop protective long term memory responses. Priming neonatal mice with a low dose of Cas-Br-E murine leukemia virus (Cas) results in adult-like, type 1 protective responses. However, other studies suggest that Ag priming of neonates leads to an increase in type 2 secondary responses even when primary responses were type 1. We assessed whether type 1 CD8+ T cell-mediated responses developed in murine neonates are maintained after secondary challenge with Cas in adulthood. Despite the induction of significant anti-viral CD8+-mediated cytotoxic T lymphocyte and IFN-gamma responses, initial neonatal priming led to a lower frequency of virus-specific T cells compared with adult priming. Adult frequencies were reached in mice primed as neonates only after secondary challenge in adulthood. A nonspecific and transient CD4+-mediated IL-4 response was present in all groups after secondary challenge with Cas or medium, indicating that this rise in type 2 cytokine production was not unique to mice that had been primed as neonates. Rather, type 1 anti-viral memory CD8+ T cell responses developed in neonatal mice are stable, protective, and enhanced after secondary challenge.  相似文献   

10.
Suppression of tumor-specific T cell sensitization is a predominant mechanism of tumor escape. To identify tumor-induced suppressor cells, we transferred spleen cells from mice bearing progressive MCA205 sarcoma into sublethally irradiated mice. These mice were then inoculated subdermally with tumor cells to stimulate T cell response in the tumor-draining lymph-node (TDLN). Tumor progression induced splenomegaly with a dramatic increase (22.1%) in CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSC) compared with 2.6% of that in normal mice. Analyses of therapeutic effects by the adoptive immunotherapy revealed that the transfer of spleen cells from tumor-bearing mice severely inhibited the generation of tumor-immune T cells in the TDLN. We further identified MDSC to be the dominant suppressor cells. However, cells of identical phenotype from normal spleens lacked the suppressive effects. The suppression was independent of CD4(+)CD25(+) regulatory T cells. Intracellular IFN-gamma staining revealed that the transfer of MDSC resulted in a decrease in numbers of tumor-specific CD4(+) and CD8(+) T cells. Transfer of MDSC from MCA207 tumor-bearing mice also suppressed the MCA205 immune response indicating a lack of immunologic specificity. Further analyses demonstrated that MDSC inhibited T cell activation that was triggered either by anti-CD3 mAb or by tumor cells. However, MDSC did not suppress the function of immune T cells in vivo at the effector phase. Our data provide the first evidence that the systemic transfer of MDSC inhibited and interfered with the sensitization of tumor-specific T cell responses in the TDLN.  相似文献   

11.
The decision to generate a productive immune response or immune tolerance following pathogenic insult often depends on the context in which T cells first encounter Ag. The presence of apoptotic cells favors the induction of tolerance, whereas immune responses generated with necrotic cells promote immunity. We have examined the tolerance induced by injection of apoptotic cells, a system in which cross-presentation of Ag associated with the dead cells induces CD8+ regulatory (or suppressor) T cells. We observed that haptenated apoptotic cells induced CD8+ suppressor T cells without priming CD4+ T cells for immunity. These CD8+ T cells transferred unresponsiveness to naive recipients. In contrast, haptenated necrotic cells stimulated immunity, but induced CD8+ suppressor T cells when CD4+ T cells were absent. We further found that CD8+ T cells induced by these treatments displayed a "helpless CTL" phenotype and suppress the immune response by producing TRAIL. Animals deficient in TRAIL were resistant to tolerance induction by apoptotic cells. Thus, the outcome of an immune response taking place in the presence of cell death can be determined by the presence of CD4+-mediated Th cell function.  相似文献   

12.
Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance.  相似文献   

13.
As humans age, they experience a progressive loss of thymic function and a corresponding shift in the makeup of the circulating CD8+ T cell population from naïve to memory phenotype. These alterations are believed to result in impaired CD8+ T cell responses in older individuals; however, evidence that these global changes impact virus-specific CD8+ T cell immunity in the elderly is lacking. To gain further insight into the functionality of virus-specific CD8+ T cells in older individuals, we interrogated a cohort of individuals who were acutely infected with West Nile virus (WNV) and chronically infected with Epstein Barr virus (EBV) and Cytomegalovirus (CMV). The cohort was stratified into young (<40 yrs), middle-aged (41–59 yrs) and aged (>60 yrs) groups. In the aged cohort, the CD8+ T cell compartment displayed a marked reduction in the frequency of naïve CD8+ T cells and increased frequencies of CD8+ T cells that expressed CD57 and lacked CD28, as previously described. However, we did not observe an influence of age on either the frequency of virus-specific CD8+ T cells within the circulating pool nor their functionality (based on the production of IFNγ, TNFα, IL2, Granzyme B, Perforin and mobilization of CD107a). We did note that CD8+ T cells specific for WNV, CMV or EBV displayed distinct functional profiles, but these differences were unrelated to age. Collectively, these data fail to support the hypothesis that immunosenescence leads to defective CD8+ T cell immunity and suggest that it should be possible to develop CD8+ T cell vaccines to protect aged individuals from infections with novel emerging viruses.  相似文献   

14.
There is an incomplete understanding of the differences between neonatal immune responses that contribute to the increased susceptibility of neonates to some viral infections. We tested the hypothesis that neonates are more susceptible than adults to mouse adenovirus type 1 (MAV-1) respiratory infection and are impaired in the ability to generate a protective immune response against a second infection. Following intranasal infection, lung viral loads were greater in neonates than in adults during the acute phase but the virus was cleared from the lungs of neonates as efficiently as it was from adult lungs. Lung gamma interferon (IFN-γ) responses were blunted and delayed in neonates, and lung viral loads were higher in adult IFN-γ(-/-) mice than in IFN-γ(+/+) controls. However, administration of recombinant IFN-γ to neonates had no effect on lung viral loads. Recruitment of inflammatory cells to the airways was impaired in neonates. CD4 and CD8 T cell responses were similar in the lungs of neonates and adults, although a transient increase in regulatory T cells occurred only in the lungs of infected neonates. Infection of neonates led to protection against reinfection later in life that was associated with increased effector memory CD8 T cells in the lungs. We conclude that neonates are more susceptible than adults to acute MAV-1 respiratory infection but are capable of generating protective immune responses.  相似文献   

15.
We investigated the relationship of memory CD4+ T cells with the evolution of influenza virus-specific CD4+ T cell responses in healthy young and elderly people. Elderly individuals had a similar frequency of CD69+CD4+ T cells producing IFN-gamma and TNF-alpha at 1 wk, but a lower frequency of these CD4+ T cells at 3 mo after influenza vaccination. Although the elderly had a higher frequency of central memory (CM; CCR7+CD45RA-) CD4+ T cells, they had a significantly lower frequency of effector memory (EM; CCR7-CD45RA-) CD4+ T cells, and the frequency of the latter memory CD4+ T cells positively correlated with the frequency of influenza virus-specific CD69+CD4+ T cells producing IFN-gamma at 3 mo. These findings indicate that the elderly have an altered balance of memory CD4+ T cells, which potentially affects long term CD4+ T cell responses to the influenza vaccine. Compared with the young, the elderly had decreased serum IL-7 levels that positively correlated with the frequency of EM cells, which suggests a relation between IL-7 and decreased EM cells. Thus, although the healthy elderly mount a level of CD4+ T cell responses after vaccination comparable to that observed in younger individuals, they fail to maintain or expand these responses. This failure probably stems from the alteration in the frequency of CM and EM CD4+ T cells in the elderly that is related to alteration in IL-7 levels. These findings raise an important clinical question about whether the vaccination strategy in the elderly should be modified to improve cellular immune responses.  相似文献   

16.
Accumulating evidence suggests that the success of some anticancer therapies not only relies on their direct cytotoxicity on tumor cells but also on their ability to promote anticancer immune responses. However, immunosuppressive cells such as Myeloid Derived Suppressor Cells (MDSC) that are generated during tumor progression blunt antitumor immune responses and thus represent a major obstacle to the clinical implementation of immunotherapy protocols. We have recently identified 5-Fluorouracil (5-FU) as an anticancer agent that selectively induced MDSC apoptotic cell death in vitro and in vivo. The elimination of MDSC by 5-FU increased IFNγ secretion by tumor specific CD8(+) T cells infiltrating the tumor and promoted T-cell dependent antitumor responses in vivo, suggesting that some anticancer therapies can reverse tumor-mediated immunosuppression. Here, we review the molecular pathways leading to the induction of MDSC in cancer and discuss how different anticancer agents successfully target these cells in vivo, thereby restoring potent anticancer immunity.  相似文献   

17.

Background

Myeloid derived suppressor cells (MDSC) are important regulators of immune responses. We evaluated the mechanistic role of MDSC depletion on antigen presenting cell (APC), NK, T cell activities and therapeutic vaccination responses in murine models of lung cancer.

Principal Findings

Individual antibody mediated depletion of MDSC (anti-Gr1 or anti-Ly6G) enhanced the antitumor activity against lung cancer. In comparison to controls, MDSC depletion enhanced the APC activity and increased the frequency and activity of the NK and T cell effectors in the tumor. Compared to controls, the anti-Gr1 or anti-Ly6G treatment led to increased: (i) CD8 T cells, (ii) NK cells, (iii) CD8 T or NK intracytoplasmic expression of IFNγ, perforin and granzyme (iv) CD3 T cells expressing the activation marker CD107a and CXCR3, (v) reduced CD8 T cell IL-10 production in the tumors (vi) reduced tumor angiogenic (VEGF, CXCL2, CXCL5, and Angiopoietin1&2) but enhanced anti-angiogenic (CXCL9 and CXCL10) expression and (vii) reduced tumor staining of endothelial marker Meca 32. Immunocytochemistry of tumor sections showed reduced Gr1 expressing cells with increased CD3 T cell infiltrates in the anti-Gr1 or anti-Ly6G groups. MDSC depletion led to a marked inhibition in tumor growth, enhanced tumor cell apoptosis and reduced migration of the tumors from the primary site to the lung compared to controls. Therapeutic vaccination responses were enhanced in vivo following MDSC depletion with 50% of treated mice completely eradicating established tumors. Treated mice that rejected their primary tumors acquired immunological memory against a secondary tumor challenge. The remaining 50% of mice in this group had 20 fold reductions in tumor burden compared to controls.

Significance

Our data demonstrate that targeting MDSC can improve antitumor immune responses suggesting a broad applicability of combined immune based approaches against cancer. This multifaceted approach may prove useful against tumors where MDSC play a role in tumor immune evasion.  相似文献   

18.
The human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, possibly due to the properties of the immature neonatal pulmonary immune system. Using the newborn lamb, a classical model of human lung development and a translational model of RSV infection, we aimed to explore the role of cell-mediated immunity in RSV disease during early life. Remarkably, in healthy conditions, the developing T cell compartment of the neonatal lung showed major differences to that seen in the mature adult lung. The most striking observation being a high baseline frequency of bronchoalveolar IL-4-producing CD4+ and CD8+ T cells, which declined progressively over developmental age. RSV infection exacerbated this pro-type 2 environment in the bronchoalveolar space, rather than inducing a type 2 response per se. Moreover, regulatory T cell suppressive functions occurred very early to dampen this pro-type 2 environment, rather than shutting them down afterwards, while γδ T cells dropped and failed to produce IL-17. Importantly, RSV disease severity was related to the magnitude of those unconventional bronchoalveolar T cell responses. These findings provide novel insights in the mechanisms of RSV immunopathogenesis in early life, and constitute a major step for the understanding of RSV disease severity.  相似文献   

19.
Regulatory T cell (Treg)-mediated suppression of CD8+ T cells has been implicated in the establishment and maintenance of chronic viral infections, but little is known about the mechanism of suppression. In this study an in vitro assay was developed to investigate the suppression of CD8+ T cells by Friend retrovirus (FV)-induced Tregs. CD4+CD25+ T cells isolated from mice chronically infected with the FV suppressed the development of effector function in naive CD8+ T cells without affecting their ability to proliferate or up-regulate activation markers. In vitro restimulation was not required for suppression by FV-induced Tregs, correlating with their high activation state in vivo. Suppression was mediated by direct T cell-T cell interactions and occurred in the absence of APCs. Furthermore, suppression occurred irrespective of the TCR specificity of the CD8+ T cells. Most interestingly, FV-induced Tregs were able to suppress the function of CD8+ effector T cells that had been physiologically activated during acute FV infection. The ability to suppress the effector function of activated CTLs is likely a requisite role for Tregs in limiting immunopathology by CD8+ T cells during antiviral immune responses. Such activity may also have adverse consequences by allowing viruses to establish and maintain chronic infections if suppression of antiviral immune responses occurs before virus eradication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号