首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV). Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of the dynamics of pathogen emergence.  相似文献   

2.

Background

Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama.

Methodology/Principal Findings

R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site.

Conclusions/Significance

In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially by changing host community structure to favor hosts that are short-lived with high reproductive rates. Study results apply to potential environmental management strategies for Chagas disease.  相似文献   

3.
In this article, we summarize the major scientific developments of the last decade on the transmission of infectious agents in multi-host systems. Almost sixty percent of the pathogens that have emerged in humans during the last 30-40 years are of animal origin and about sixty percent of them show an important variety of host species besides humans (3 or more possible host species). In this review, we focus on zoonotic infections with vector-borne transmission and dissect the contrasting effects that a multiplicity of host reservoirs and vectors can have on their disease dynamics. We discuss the effects exerted by host and vector species richness and composition on pathogen prevalence (i.e., reduction, including the dilution effect, or amplification). We emphasize that, in multiple host systems and for vector-borne zoonotic pathogens, host reservoir species and vector species can exert contrasting effect locally. The outcome on disease dynamics (reduced pathogen prevalence in vectors when the host reservoir species is rich and increased pathogen prevalence when the vector species richness increases) may be highly heterogeneous in both space and time. We then ask briefly how a shift towards a more systemic perspective in the study of emerging infectious diseases, which are driven by a multiplicity of hosts, may stimulate further research developments. Finally, we propose some research avenues that take better into account the multi-host species reality in the transmission of the most important emerging infectious diseases, and, particularly, suggest, as a possible orientation, the careful assessment of the life-history characteristics of hosts and vectors in a community ecology-based perspective.  相似文献   

4.
The transmission and the persistence of tick-borne infections are strongly influenced by the densities and the structure of host populations. By extending previous models and analysis, in this paper we analyse how the persistence of ticks and pathogens, is affected by the dynamics of tick populations, and by their host densities. The effect of host densities on infection persistence is explored through the analysis and simulation of a series of models that include different assumptions on tick-host dynamics and consider different routes of infection transmission. Ticks are assumed to feed on two types of host species which vary in their reservoir competence. Too low densities of competent hosts (i.e., hosts where transmission can occur) do not sustain the infection cycle, while too high densities of incompetent hosts may dilute the competent hosts so much to make infection persistence impossible. A dilution effect may occur also for competent hosts as a consequence of reduced tick to host ratio; this is possible only if the regulation of tick populations is such that tick density does not increase linearly with host densities.  相似文献   

5.
West Nile virus, which was recently introduced to North America, is a mosquito-borne pathogen that infects a wide range of vertebrate hosts, including humans. Several species of birds appear to be the primary reservoir hosts, whereas other bird species, as well as other vertebrate species, can be infected but are less competent reservoirs. One hypothesis regarding the transmission dynamics of West Nile virus suggests that high bird diversity reduces West Nile virus transmission because mosquito blood-meals are distributed across a wide range of bird species, many of which have low reservoir competence. One mechanism by which this hypothesis can operate is that high-diversity bird communities might have lower community-competence, defined as the sum of the product of each species’ abundance and its reservoir competence index value. Additional hypotheses posit that West Nile virus transmission will be reduced when either: (1) abundance of mosquito vectors is low; or (2) human population density is low. We assessed these hypotheses at two spatial scales: a regional scale near Saint Louis, MO, and a national scale (continental USA). We found that prevalence of West Nile virus infection in mosquito vectors and in humans increased with decreasing bird diversity and with increasing reservoir competence of the bird community. Our results suggest that conservation of avian diversity might help ameliorate the current West Nile virus epidemic in the USA  相似文献   

6.
Wildlife are important reservoirs for many pathogens, yet the role that different species play in pathogen maintenance frequently remains unknown. This is the case for rabies, a viral disease of mammals. While Carnivora (carnivores) and Chiroptera (bats) are the canonical mammalian orders known to be responsible for the maintenance and onward transmission of rabies Lyssavirus (RABV), the role of most species within these orders remains unknown and is continually changing as a result of contemporary host shifting. We combined a trait-based analytical approach with gradient boosting machine learning models to identify physiological and ecological host features associated with being a reservoir for RABV. We then used a cooperative game theory approach to determine species-specific traits associated with known RABV reservoirs. Being a carnivore reservoir for RABV was associated with phylogenetic similarity to known RABV reservoirs, along with other traits such as having larger litters and earlier sexual maturity. For bats, location in the Americas and geographic range were the most important predictors of RABV reservoir status, along with having a large litter. Our models identified 44 carnivore and 34 bat species that are currently not recognized as RABV reservoirs, but that have trait profiles suggesting their capacity to be or become reservoirs. Further, our findings suggest that potential reservoir species among bats and carnivores occur both within and outside of areas with current RABV circulation. These results show the ability of a trait-based approach to detect potential reservoirs of infection and could inform rabies control programs and surveillance efforts by identifying the types of species and traits that facilitate RABV maintenance and transmission.  相似文献   

7.
The analysis of different multi-host systems suggests that even hosts that are not capable of transmitting Borrelia burgdorferi sensu lato (s.l.) to the tick vector, Ixodes ricinus, or that are secondary reservoirs for these agents contribute to the intensity of transmission and to the overall risk of Lyme borreliosis, through the process of vector augmentation and pathogen amplification. On the other hand, above certain threshold densities, or in the presence of competition with primary reservoir hosts or low attachment rate of ticks to reservoir hosts, incompetent or less competent hosts may reduce transmission through dilution. The transmission of B. burgdorferi s.l. is affected by molecular processes at the tick-host interface including mechanisms for the protection of spirochaetes against the host's immune response. Molecular biology also increasingly provides important identification tools for the study of tick-borne disease agents. Ixodes ricinus and B. burgdorferi s.l. are expanding their geographical range to northern latitudes and to higher altitudes through the effects of climate change on host populations and on tick development, survival and seasonal activity. The integration of quantitative ecology with molecular methodology is central to a better understanding of the factors that determine the main components of Lyme borreliosis eco-epidemiology and should result in more accurate predictions of the effects of climate change on the circulation of pathogens in nature.  相似文献   

8.
The Dilution Effect Hypothesis (DEH) argues that greater biodiversity lowers the risk of disease and reduces the rates of pathogen transmission since more diverse communities harbour fewer competent hosts for any given pathogen, thereby reducing host exposure to the pathogen. DEH is expected to operate most intensely in vector-borne pathogens and when species-rich communities are not associated with increased host density. Overall, dilution will occur if greater species diversity leads to a lower contact rate between infected vectors and susceptible hosts, and between infected hosts and susceptible vectors. Field-based tests simultaneously analysing the prevalence of several multi-host pathogens in relation to host and vector diversity are required to validate DEH. We tested the relationship between the prevalence in house sparrows (Passer domesticus) of four vector-borne pathogens–three avian haemosporidians (including the avian malaria parasite Plasmodium and the malaria-like parasites Haemoproteus and Leucocytozoon) and West Nile virus (WNV)–and vertebrate diversity. Birds were sampled at 45 localities in SW Spain for which extensive data on vector (mosquitoes) and vertebrate communities exist. Vertebrate censuses were conducted to quantify avian and mammal density, species richness and evenness. Contrary to the predictions of DEH, WNV seroprevalence and haemosporidian prevalence were not negatively associated with either vertebrate species richness or evenness. Indeed, the opposite pattern was found, with positive relationships between avian species richness and WNV seroprevalence, and Leucocytozoon prevalence being detected. When vector (mosquito) richness and evenness were incorporated into the models, all the previous associations between WNV prevalence and the vertebrate community variables remained unchanged. No significant association was found for Plasmodium prevalence and vertebrate community variables in any of the models tested. Despite the studied system having several characteristics that should favour the dilution effect (i.e., vector-borne pathogens, an area where vector and host densities are unrelated, and where host richness is not associated with an increase in host density), none of the relationships between host species diversity and species richness, and pathogen prevalence supported DEH and, in fact, amplification was found for three of the four pathogens tested. Consequently, the range of pathogens and communities studied needs to be broadened if we are to understand the ecological factors that favour dilution and how often these conditions occur in nature.  相似文献   

9.
The influence of host diversity on multi-host pathogen transmission and persistence can be confounded by the large number of species and biological interactions that can characterize many transmission systems. For vector-borne pathogens, the composition of host communities has been hypothesized to affect transmission; however, the specific characteristics of host communities that affect transmission remain largely unknown. We tested the hypothesis that vector host use and force of infection (i.e., the summed number of infectious mosquitoes resulting from feeding upon each vertebrate host within a community of hosts), and not simply host diversity or richness, determine local infection rates of West Nile virus (WNV) in mosquito vectors. In suburban Chicago, Illinois, USA, we estimated community force of infection for West Nile virus using data on Culex pipiens mosquito host selection and WNV vertebrate reservoir competence for each host species in multiple residential and semi-natural study sites. We found host community force of infection interacted with avian diversity to influence WNV infection in Culex mosquitoes across the study area. Two avian species, the American robin (Turdus migratorius) and the house sparrow (Passer domesticus), produced 95.8% of the infectious Cx. pipiens mosquitoes and showed a significant positive association with WNV infection in Culex spp. mosquitoes. Therefore, indices of community structure, such as species diversity or richness, may not be reliable indicators of transmission risk at fine spatial scales in vector-borne disease systems. Rather, robust assessment of local transmission risk should incorporate heterogeneity in vector host feeding and variation in vertebrate reservoir competence at the spatial scale of vector-host interaction.  相似文献   

10.
Haemosporidian parasites of birds are ubiquitous in terrestrial ecosystems, but their coevolutionary dynamics remain poorly understood. If species turnover in parasites occurs at a finer scale than turnover in hosts, widespread hosts would encounter diverse parasites, potentially diversifying as a result. Previous studies have shown that some wide-ranging hosts encounter varied haemosporidian communities throughout their range, and vice-versa. More surveys are needed to elucidate mechanisms that underpin spatial patterns of diversity in this complex multi-host multi-parasite system. We sought to understand how and why a community of avian haemosporidian parasites varies in abundance and composition across elevational transects in eight sky islands in southwestern North America. We tested whether bird community composition, environment, or geographic distance explain haemosporidian parasite species turnover in a widespread host that harbors a diverse haemosporidian community, the Audubon’s Warbler (Setophaga auduboni). We tested predictors of infection using generalized linear models, and predictors of bird and parasite community dissimilarity using generalized dissimilarity modeling. Predictors of infection differed by parasite genus: Parahaemoproteus was predicted by elevation and climate, Leucocytozoon varied idiosyncratically among mountains, and Plasmodium was unpredictable, but rare. Parasite turnover was nearly three-fold higher than bird turnover and was predicted by elevation, climate, and bird community composition, but not geographic distance. Haemosporidian communities vary strikingly at fine spatial scales (hundreds of kilometers), across which the bird community varies only subtly. The finer scale of turnover among parasites implies that their ranges may be smaller than those of their hosts. Avian host species should encounter different parasite species in different parts of their ranges, resulting in spatially varying selection on host immune systems. The fact that parasite turnover was predicted by bird turnover, even when considering environmental characteristics, implies that host species or their phylogenetic history plays a role in determining which parasite species will be present in a community.  相似文献   

11.

The relationship between humans, wildlife and disease transmission can be complex and context-dependent, and disease dynamics may be determined by idiosyncratic species. Therefore, an outstanding question is how general is the finding that species with faster life histories are more probable hosts of zoonoses. Ecological knowledge on species, jointly with public health data, can provide relevant information on species that should be targeted for epidemiological surveillance or management. We investigated whether mammal species traits can be good indicators of zoonotic reservoir status in an intensified agricultural region of Argentina. We find support for a relationship between reservoir status and the pace of life syndrome, confirming that fast life histories can be a factor of zoonotic risk. Nonetheless, we observed that for certain zoonosis, reservoirs may display a slow pace of life, suggesting that idiosyncratic interactions can occur. We conclude that applying knowledge from the life history-disease relationship can contribute significantly to disease risk assessment. Such an approach may be especially valuable in the current context of environmental change and agricultural intensification.

  相似文献   

12.
To describe the contribution of garden dormice to the epizootiology of Lyme disease, we compared their reservoir capacity for these pathogens to that of other sympatric hosts. Garden dormice are trapped most abundantly during early spring and again during midsummer, when their offspring forage. They are closely associated with moist forests. Garden dormice serve as hosts to nymphal ticks far more frequently than do other small mammals. Spirochetal infection is most prevalent in dormice, and many more larval ticks acquire infection in the course of feeding on these than on other rodents in the study site. Mature dormice appear to contribute more infections to the vector population than juveniles do. Replete larval ticks generally detach while their dormouse hosts remain within their nests. The population of garden dormice contributes five- to sevenfold more infections to the vector population than the mouse population does. Their competence, nymphal feeding density, and preference for a tick-permissive habitat combine to favor garden dormice over other putative reservoir hosts of Lyme disease spirochetes.  相似文献   

13.
The distribution of vector meals in the host community is an important element of understanding and predicting vector-borne disease risk. Lizards (such as the western fence lizard; Sceloporus occidentalis) play a unique role in Lyme disease ecology in the far-western United States. Lizards rather than mammals serve as the blood meal hosts for a large fraction of larval and nymphal western black-legged ticks (Ixodes pacificus--the vector for Lyme disease in that region) but are not competent reservoirs for the pathogen, Borrelia burgdorferi. Prior studies have suggested that the net effect of lizards is to reduce risk of human exposure to Lyme disease, a hypothesis that we tested experimentally. Following experimental removal of lizards, we documented incomplete host switching by larval ticks (5.19%) from lizards to other hosts. Larval tick burdens increased on woodrats, a competent reservoir, but not on deer mice, a less competent pathogen reservoir. However, most larvae failed to find an alternate host. This resulted in significantly lower densities of nymphal ticks the following year. Unexpectedly, the removal of reservoir-incompetent lizards did not cause an increase in nymphal tick infection prevalence. The net result of lizard removal was a decrease in the density of infected nymphal ticks, and therefore a decreased risk to humans of Lyme disease. Our results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors.  相似文献   

14.
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen.  相似文献   

15.
The application of projection matrices in population biology to plant and animal populations has a parallel in infectious disease ecology when next-generation matrices (NGMs) are used to characterize growth in numbers of infected hosts ( R 0). The NGM is appropriate for multi-host pathogens, where each matrix element represents the number of cases of one type of host arising from a single infected individual of another type. For projection matrices, calculations of the sensitivity and elasticity of the population growth rate to changes in the matrix elements has generated insight into plant and animal populations. These same perturbation analyses can be used for infectious disease systems. To illustrate this in detail we parameterized an NGM for seven tick-borne zoonoses and compared them in terms of the contributions to R 0 from three different routes of transmission between ticks, and between ticks and vertebrate hosts. The definition of host type may be the species of the host or the route of infection, or, as was the case for the set of tick-borne pathogens, a combination of species and the life stage at infection. This freedom means that there is a broad range of disease systems and questions for which the methodology is appropriate.  相似文献   

16.
The rapid geographic spread of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) across the United States has stimulated interest in comparative host infection studies to delineate competent avian hosts critical for viral amplification. We compared the host competence of four taxonomically related blackbird species (Icteridae) after experimental infection with WNV and with two endemic, mosquito-borne encephalitis viruses, western equine encephalomyelitis virus (family Togaviridae, genus Alphavirus, WEEV), and St. Louis encephalitis virus (family Flaviviridae, genus Flavivirus, SLEV). We predicted differences in disease resistance among the blackbird species based on differences in life history, because they differ in geographic range and life history traits that include mating and breeding systems. Differences were observed among the response of these hosts to all three viruses. Red-winged Blackbirds were more susceptible to SLEV than Brewer's Blackbirds, whereas Brewer's Blackbirds were more susceptible to WEEV than Red-winged Blackbirds. In response to WNV infection, cowbirds showed the lowest mean viremias, cleared their infections faster, and showed lower antibody levels than concurrently infected species. Brown-headed Cowbirds also exhibited significantly lower viremia responses after infection with SLEV and WEEV as well as coinfection with WEEV and WNV than concurrently infected icterids. We concluded that cowbirds may be more resistant to infection to both native and introduced viruses because they experience heightened exposure to a variety of pathogens of parenting birds during the course of their parasitic life style.  相似文献   

17.
Life histories of animals tend to vary along a slow to fast continuum. Those with fast life histories have shorter life spans, faster development, and higher reproductive rates relative to animals with slower life histories. These differences in life histories have been linked to differences in investment in immunological defenses. Animals with faster life histories are predicted to invest relatively more in innate immune responses, which include rapidly‐deployed, non‐specific defenses against a broad spectrum of invaders. On the other hand, animals with slower life histories are predicted to invest relatively more in adaptive immune responses, which are more slowly‐deployed and are highly pathogen‐specific. These predictions have been confirmed in some taxa, but other studies have not found this association. We tested this prediction by measuring innate and adaptive immunity of white‐footed mice Peromyscus leucopus, chipmunks Tamias striatus, and gray squirrels Sciurus carolinensis, three species of rodents that inhabit deciduous forests in the northeastern US. These species exhibit a range of life histories, with mice having a relatively fast life history, squirrels a relatively slow one, and chipmunks an intermediate one. We found mice to have the greatest ‘bacterial killing capacity’, a common measure of innate immunity, and squirrels the lowest, consistent with the pace‐of‐life immune‐defense hypothesis. We also found squirrels to mount the most pronounced antibody response when challenged with lipopolysaccharide (LPS), an immunogenic component of bacteria, while mice had the lowest, again consistent with predictions based on their life histories. These results have implications beyond ecoimmunology because the probability that a host species will transmit an infection – its ‘reservoir competence’ – has been linked to its immune strategy. Understanding the relationship between immunology and reservoir competence is a critical frontier in the ecology of infectious diseases.  相似文献   

18.
In the study of multi-host parasites, it is often found that host species contribute asymmetrically to parasite transmission. Yet in natural populations, identifying which hosts contribute to parasite transmission and maintenance is a recurring challenge. Here, we approach this issue by taking advantage of natural variation in the composition of a host community. We studied the brine shrimps Artemia franciscana and Artemia parthenogenetica and their microsporidian parasites Anostracospora rigaudi and Enterocytospora artemiae. Previous laboratory experiments had shown that each host can transmit both parasites, but could not predict their actual contributions to the parasites’ maintenance in the field. To resolve this, we gathered long-term prevalence data from a metacommunity of these species. Metacommunity patches could contain either or both of the Artemia host species, so that the presence of the hosts could be linked directly to the persistence of the parasites. First, we show that the microsporidian A. rigaudi is a spillover parasite: it was unable to persist in the absence of its maintenance host A. parthenogenetica. This result was particularly striking, as A. rigaudi displayed both high prevalence (in the field) and high infectivity (when tested in the laboratory) in both hosts. Moreover, the seasonal presence of A. parthenogenetica imposed seasonality on the rate of spillover, causing cyclical pseudo-endemics in the spillover host A. franciscana. Second, while our prevalence data was sufficient to identify E. artemiae as either a spillover or a facultative multi-host parasite, we could not distinguish between the two possibilities. This study supports the importance of studying the community context of multi-host parasites, and demonstrates that in appropriate multi-host systems, sampling across a range of conditions and host communities can lead to clear conclusions about the drivers of parasite persistence.  相似文献   

19.
Bartonella species are recognized globally as emerging zoonotic pathogens. Small mammals such as rodents and shrews are implicated as major natural reservoirs for these microbial agents. Nevertheless, in several tropical countries, like India, the diversity of Bartonella in small mammals remain unexplored and limited information exists on the natural transmission cycles (reservoirs and vectors) of these bacteria. Using a multi-locus sequencing approach, we investigated the prevalence, haplotype diversity, and phylogenetic affinities of Bartonella in small mammals and their associated mites in a mixed-use landscape in the biodiverse Western Ghats in southern India. We sampled 141 individual small mammals belonging to eight species. Bartonella was detected in five of the eight species, including three previously unknown hosts. We observed high interspecies variability of Bartonella prevalence in the host community. However, the overall prevalence (52.5%) and haplotype diversity (0.9) was high for the individuals tested. Of the seven lineages of Bartonella identified in our samples, five lineages were phylogenetically related to putative zoonotic species–B. tribocorum, B. queenslandensis, and B. elizabethae. Haplotypes identified from mites were identical to those identified from their host species. This indicates that these Bartonella species may be zoonotic, but further work is necessary to confirm whether these are pathogenic and pose a threat to humans. Taken together, these results emphasize the presence of hitherto unexplored diversity of Bartonella in wild and synanthropic small mammals in mixed-use landscapes. The study also highlights the necessity to assess the risk of spillover to humans and other incidental hosts.  相似文献   

20.
Lyme borreliosis, one of the most frequently contracted zoonotic diseases in the Northern Hemisphere, is caused by bacteria belonging to different genetic groups within the Borrelia burgdorferi species complex, which are transmitted by ticks among various wildlife reservoirs, such as small mammals and birds. These features make the Borrelia burgdorferi species complex an attractive biological model that can be used to study the diversification and the epidemiology of endemic bacterial pathogens. We investigated the potential of population genomic approaches to study these processes. Sixty-three strains belonging to three species within the Borrelia burgdorferi complex were isolated from questing ticks in Alsace (France), a region where Lyme disease is highly endemic. We first aimed to characterize the degree of genetic isolation among the species sampled. Phylogenetic and coalescent-based analyses revealed clear delineations: there was a ∼50 fold difference between intra-specific and inter-specific recombination rates. We then investigated whether the population genomic data contained information of epidemiological relevance. In phylogenies inferred using most of the genome, conspecific strains did not cluster in clades. These results raise questions about the relevance of different strategies when investigating pathogen epidemiology. For instance, here, both classical analytic approaches and phylodynamic simulations suggested that population sizes and migration rates were higher in B. garinii populations, which are normally associated with birds, than in B. burgdorferi s.s. populations. The phylogenetic analyses of the infection-related ospC gene and its flanking region provided additional support for this finding. Traces of recombination among the B. burgdorferi s.s. lineages and lineages associated with small mammals were found, suggesting that they shared the same hosts. Altogether, these results provide baseline evidence that can be used to formulate hypotheses regarding the host range of B. burgdorferi lineages based on population genomic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号