首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxSSm) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

3.
Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacteriocin production both in broth and in biofilms. The inhibition of S. mutans bacteriocin production by oral bacteria was stronger in biofilms than in broth. Using transposon Tn916 mutagenesis, we identified a gene (sgc; named for Streptococcus gordonii challisin) responsible for the inhibition of S. mutans bacteriocin production by S. gordonii Challis. Interruption of the sgc gene in S. gordonii Challis resulted in attenuated inhibition of S. mutans bacteriocin production. The supernatant fluids from the sgc mutant did not inactivate the exogenous S. mutans CSP as did those from the parent strain Challis. S. gordonii Challis did not inactivate bacteriocin produced by S. mutans GS5. Because S. mutans uses quorum sensing to regulate virulence, strategies designed to interfere with these signaling systems may have broad applicability for biological control of this caries-causing organism.  相似文献   

4.
The formation of dental caries is a complex process that ultimately leads to damage of the tooth enamel from acids produced by microbes in attached biofilms. The bacterial interactions occurring within these biofilms between cariogenic bacteria, such as the mutans streptococci, and health-associated commensal streptococci, are thought to be critical determinants of health and disease. To better understand these interactions, a Streptococcus mutans reporter strain that actively monitors cell–cell communication via peptide signaling was cocultured with different commensal streptococci. Signaling by S. mutans, normally highly active in monoculture, was completely inhibited by several species of commensals, but only when the bacteria were in direct contact with S. mutans. We identified a novel gene expression pattern that occurred in S. mutans when cultured directly with these commensals. Finally, mutant derivatives of commensals lacking previously shown antagonistic gene products displayed wild-type levels of signal inhibition in cocultures. Collectively, these results reveal a novel pathway(s) in multiple health-associated commensal streptococci that blocks peptide signaling and induces a common contact-dependent pattern of differential gene expression in S. mutans. Understanding the molecular basis for this inhibition will assist in the rational design of new risk assessments, diagnostics, and treatments for the most pervasive oral infectious diseases.Subject terms: Biofilms, Microbial ecology, Bacteriology, Bacterial genetics  相似文献   

5.
Dental caries induced by Streptococcus mutans is one of the most prevalent chronic infectious diseases worldwide. The pathogenicity of S. mutans relies on the bacterium''s ability to colonize tooth surfaces and survive a strongly acidic environment. We performed an ISS1 transposon mutagenesis to screen for acid-sensitive mutants of S. mutans and identified an SMU.746-SMU.747 gene cluster that is needed for aciduricity. SMU.746 and SMU.747 appear to be organized in an operon and encode a putative membrane-associated permease. SMU.746- and SMU.747-deficient mutants showed a reduced ability to grow in acidified medium. However, the short-term or long-term acid survival capacity and F1F0 ATPase activity remained unaffected in the mutants. Furthermore, deletion of both genes did not change cell membrane permeability and the oxidative and heat stress responses. Growth was severely affected even with slight acidification of the defined medium (pH 6.5). The ability of the mutant strain to acidify the defined medium during growth in the presence of glucose and sucrose was significantly reduced, although the glycolysis rate was only slightly affected. Surprisingly, deletion of the SMU.746-SMU.747 genes triggered increased biofilm formation in low-pH medium. The observed effects were more striking in a chemically defined medium. We speculate that the SMU.746-SMU.747 complex is responsible for amino acid transport, and we discuss its possible role in colonization and survival in the oral environment.  相似文献   

6.
7.

Background

Microbial cell-cell interactions in the oral flora are believed to play an integral role in the development of dental plaque and ultimately, its pathogenicity. The effects of other species of oral bacteria on biofilm formation and virulence gene expression by Streptococcus mutans, the primary etiologic agent of dental caries, were evaluated using a dual-species biofilm model and RealTime-PCR analysis.

Results

As compared to mono-species biofilms, biofilm formation by S. mutans was significantly decreased when grown with Streptococcus sanguinis, but was modestly increased when co-cultivated with Lactobacillus casei. Co-cultivation with S. mutans significantly enhanced biofilm formation by Streptococcus oralis and L. casei, as compared to the respective mono-species biofilms. RealTime-PCR analysis showed that expression of spaP (for multi-functional adhesin SpaP, a surface-associated protein that S. mutans uses to bind to the tooth surface in the absence of sucrose), gtfB (for glucosyltransferase B that synthesizes α1,6-linked glucan polymers from sucrose and starch carbohydrates) and gbpB (for surface-associated protein GbpB, which binds to the glucan polymers) was decreased significantly when S. mutans were co-cultivated with L. casei. Similar results were also found with expression of spaP and gbpB, but not gtfB, when S. mutans was grown in biofilms with S. oralis. Compared to mono-species biofilms, the expression of luxS in S. mutans co-cultivated with S. oralis or L. casei was also significantly decreased. No significant differences were observed in expression of the selected genes when S. mutans was co-cultivated with S. sanguinis.

Conclusions

These results suggest that the presence of specific oral bacteria differentially affects biofilm formation and virulence gene expression by S. mutans.  相似文献   

8.
Aerobic microorganisms have evolved different strategies to withstand environmental oxidative stresses generated by various reactive oxygen species (ROS). For the facultative anaerobic human oral pathogen Streptococcus mutans, the mechanisms used to protect against ROS are not fully understood, since it does not possess catalase, an enzyme that degrades hydrogen peroxide. In order to elucidate the genes that are essential for superoxide stress response, methyl viologen (MV)-sensitive mutants of S. mutans were generated via ISS1 mutagenesis. Screening of approximately 2,500 mutants revealed six MV-sensitive mutants, each containing an insertion in one of five genes, including a highly conserved hypothetical gene, SMU.1297. Sequence analysis suggests that SMU.1297 encodes a hypothetical protein with a high degree of homology to the Bacillus subtilis YtqI protein, which possesses an oligoribonuclease activity that cleaves nano-RNAs and a phosphatase activity that degrades 3′-phosphoadenosine-5′-phosphate (pAp) and 3′-phosphoadenosine-5′-phosphosulfate (pApS) to produce AMP; the latter activity is similar to the activity of the Escherichia coli CysQ protein, which is required for sulfur assimilation. SMU.1297 was deleted using a markerless Cre-loxP-based strategy; the SMU.1297 deletion mutant was just as sensitive to MV as the ISS1 insertion mutant. Complementation of the deletion mutant with wild-type SMU.1297, in trans, restored the parental phenotype. Biochemical analyses with purified SMU.1297 protein demonstrated that it has pAp phosphatase activity similar to that of YtqI but apparently lacks an oligoribonuclease activity. The ability of SMU.1297 to dephosphorylate pApS in vivo was confirmed by complementation of an E. coli cysQ mutant with SMU.1297 in trans. Thus, our results suggest that SMU.1297 is involved in superoxide stress tolerance in S. mutans. Furthermore, the distribution of homologs of SMU.1297 in streptococci indicates that this protein is essential for superoxide stress tolerance in these organisms.Streptococcus mutans, a gram-positive bacterium with a low G+C content, is widely considered the primary etiological agent of dental caries, a common human infectious disease (16, 23). S. mutans is also an important agent of infective endocarditis, as a large number of cases of viridans streptococcus-induced endocarditis are caused by S. mutans (18). During colonization of the oral cavity, S. mutans encounters various environmental stresses, including nutritional limitation, temperature fluctuation, osmotic shock, low pH conditions, radiation, toxins, and variations in oxygen tension (21). Despite these harsh conditions, S. mutans has developed multiple mechanisms for successful survival in the human host by forming diverse and densely populated biofilms on the tooth surface (4). The extraordinary ability of S. mutans to adapt and flourish in the diverse and adverse environment of the oral cavity emphasizes the fundamental importance of the need for detailed analyses of the molecular mechanisms of stress tolerance response in this organism.S. mutans is a facultative anaerobic organism, but it can tolerate aerobic conditions for colonization and survival. Like other streptococci, it does not possess cytochromes and therefore cannot carry out energy-conserving oxidative phosphorylation (2). However, irrespective of the growth conditions, S. mutans derives the energy for growth through fermentation of glucose and other sugars (26). This can lead to unwanted consequences, especially when the organism is exposed to aerobic conditions in the oral cavity. If the molecular oxygen is not fully reduced by the four-electron reduction step to water, it can undergo one- or two-electron reductions to form reactive superoxide radicals, hydroxyl radicals, and hydrogen peroxide, collectively known as reactive oxygen species (ROS) (19). These radicals, when accumulated in large amounts, can trigger oxidation of lipid, protein, and nucleic acid inside the cell, ultimately leading to cellular death (19, 20).Aerobic bacteria have developed multiple strategies to adapt and protect against ROS insults (19). These strategies include (i) enzymes that scavenge ROS, such as superoxide dismutases (SOD), catalases, and peroxidases; (ii) protein repair systems, such as thioredoxin; (iii) DNA damage repair enzymes such as RecA; and (iv) proteins that regulate intracellular iron level to ameliorate the generation of ROS. Although streptococci contain SOD, NADH oxidase, glutathione reductase, and other proteins to counter ROS threats, they do not contain catalase, a key protective enzyme against oxidative radicals. Therefore, the defense strategy against damage by ROS is significantly different in streptococci than in other bacteria. For example, the growth of S. mutans in planktonic or biofilm mode can influence the respiratory rates as well as the activities of the protective enzymes, such as SOD and NADH oxidase (31).Apart from studies related to the physiology of oxidative stress in S. mutans, very little information is available on the oxidative-stress response and its regulation in this organism. Many key regulatory genes, including members of the OxyR and SoxR families, which are involved in sensing and responding to ROS attacks, are not encoded in the genome of S. mutans (2). Instead, S. mutans has a PerR homolog, which has been shown to be involved in hydrogen peroxide stress response in this organism (21). The luxS gene of S. mutans, which encodes an enzyme that synthesizes the intercellular signaling molecule AI-2, is also involved in the oxidative-stress response (52). However, the exact mechanism by which LuxS participates in the oxidative-stress response is currently unknown. Furthermore, a recent investigation suggests that a two-component signal transduction system, ScnRK, is necessary for counteracting ROS in S. mutans (11).The major focus of this study was to identify the genes that are involved in the defense against superoxide stress of S. mutans strain UA159. Toward this end, a library of mutants was generated by insertion mutagenesis, and the mutants were screened for their sensitivity to methyl viologen (MV), a superoxide-generating compound. This study enabled the identification of five loci that are potentially involved in superoxide tolerance. One of the identified loci is SMU.1297, which encodes a protein homologous to YtqI of Bacillus subtilis. The biochemical characterization of SMU.1297 and its role in superoxide stress tolerance response are presented.  相似文献   

9.
Streptococcus mutans strain GS-5 produces a two-peptide lantibiotic, Smb, which displays inhibitory activity against a broad spectrum of bacteria, including other streptococci. For inhibition, lantibiotics must recognize specific receptor molecules present on the sensitive bacterial cells. However, so far no such receptor proteins have been identified for any lantibiotics. In this study, using a powerful transposon mutagenesis approach, we have identified in Streptococcus pyogenes a gene that exhibits a receptor-like function for Smb. The protein encoded by that gene, which we named LsrS, is a membrane protein belonging to the CAAX protease family. We also found that nisin, a monopeptide lantibiotic, requires LsrS for its optimum inhibitory activity. However, we found that LsrS is not required for inhibition by haloduracin and galolacticin, both of which are two-peptide lantibiotics closely related to Smb. LsrS appears to be a well-conserved protein that is present in many streptococci, including S. mutans. Inactivation of SMU.662, an LsrS homolog, in S. mutans strains UA159 and V403 rendered the cells refractory to Smb-mediated killing. Furthermore, overexpression of LsrS in S. mutans created cells more susceptible to Smb. Although LsrS and its homolog contain the CAAX protease domain, we demonstrate that inactivation of the putative active sites on the LsrS protein has no effect on its receptor-like function. This is the first report describing a highly conserved membrane protein that displays a receptor-like function for lantibiotics.  相似文献   

10.
Acidogenicity and aciduricity are the main virulence factors of the cavity-causing bacterium Streptococcus mutans. Monitoring at the individual cell level the temporal and spatial distribution of acid produced by this important oral pathogen is central for our understanding of these key virulence factors especially when S. mutans resides in multi-species microbial communities. In this study, we explored the application of pH-sensitive green fluorescent proteins (pHluorins) to investigate these important features. Ecliptic pHluorin was functionally displayed on the cell surface of S. mutans as a fusion protein with SpaP. The resulting strain (O87) was used to monitor temporal and spatial pH changes in the microenvironment of S. mutans cells under both planktonic and biofilm conditions. Using strain O87, we revealed a rapid pH drop in the microenviroment of S. mutans microcolonies prior to the decrease in the macro-environment pH following sucrose fermentation. Meanwhile, a non-uniform pH distribution was observed within S. mutans biofilms, reflecting differences in microbial metabolic activity. Furthermore, strain O87 was successfully used to monitor the S. mutans acid production profiles within dual- and multispecies oral biofilms. Based on these findings, the ecliptic pHluorin allows us to investigate in vivo and in situ acid production and distribution by the cariogenic species S. mutans.  相似文献   

11.
As an oral bacterial pathogen, Streptococcus mutans has been known as the aetiologic agent of human dental caries. Among a total of 1960 identified proteins within the genome of this organism, there are about 500 without any known functions. One of these proteins, SMU.440, has very few homologs in the current protein databases and it does not fall into any protein functional families. Phylogenetic studies showed that SMU.440 is related to a particular ecological niche and conserved specifically in some oral pathogens, due to lateral gene transfer. The co-occurrence of a MarR protein within the same operon among these oral pathogens suggests that SMU.440 may be associated with antibiotic resistance. The structure determination of SMU.440 revealed that it shares the same fold and a similar pocket as polyketide cyclases, which indicated that it is very likely to bind some polyketide-like molecules. From the interlinking structural and bioinformatics studies, we have concluded that SMU.440 could be involved in polyketide-like antibiotic resistance, providing a better understanding of this hypothetical protein. Besides, the combination of multiple methods in this study can be used as a general approach for functional studies of a protein with unknown function.  相似文献   

12.
LuxS-Based Signaling Affects Streptococcus mutans Biofilm Formation   总被引:2,自引:0,他引:2       下载免费PDF全文
Streptococcus mutans is implicated as a major etiological agent in human dental caries, and one of the important virulence properties of this organism is its ability to form biofilms (dental plaque) on tooth surfaces. We examined the role of autoinducer-2 (AI-2) on S. mutans biofilm formation by constructing a GS-5 luxS-null mutant. Biofilm formation by the luxS mutant in 0.5% sucrose defined medium was found to be markedly attenuated compared to the wild type. Scanning electron microscopy also revealed that biofilms of the luxS mutant formed larger clumps in sucrose medium compared to the parental strain. Therefore, the expression of glucosyltransferase genes was examined and the gtfB and gtfC genes, but not the gtfD gene, in the luxS mutant were upregulated in the mid-log growth phase. Furthermore, we developed a novel two-compartment system to monitor AI-2 production by oral streptococci and periodontopathic bacteria. The biofilm defect of the luxS mutant was complemented by strains of S. gordonii, S. sobrinus, and S. anginosus; however, it was not complemented by S. oralis, S. salivarius, or S. sanguinis. Biofilm formation by the luxS mutant was also complemented by Porphyromonas gingivalis 381 and Actinobacillus actinomycetemcomitans Y4 but not by a P. gingivalis luxS mutant. These results suggest that the regulation of the glucosyltransferase genes required for sucrose-dependent biofilm formation is regulated by AI-2. Furthermore, these results provide further confirmation of previous proposals that quorum sensing via AI-2 may play a significant role in oral biofilm formation.  相似文献   

13.
Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ?lytS and ?lytT; LTA – ?dltA and ?dltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.  相似文献   

14.
Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.  相似文献   

15.
Dental caries is a common oral bacterial infectious disease. Its prevention and treatment requires control of the causative pathogens within dental plaque, especially Streptococcus mutans (S. mutans). Antimicrobial peptides (AMPs), one of the promising substitutes for conventional antibiotics, have been widely tested and used for controlling bacterial infections. The present study focuses on evaluating the potential of the novel AMPs cyclic bactenecin and its derivatives against bacteria associated with dental caries. The results indicate that Bac8c displayed highest activity against the bacteria tested, whereas both cyclic and linear bactenecin had weak antimicrobial activity. The cytotoxicity assay showed that Bac8c did not cause detectable toxicity at concentrations of 32–128 μg/ml for 5 min or 32–64 μg/ml for 60 min. S. mutans and Lactobacillus fermenti treated with Bac8c showed variable effects on bacterial structure via scanning electron microscopy and transmission electron microscopy. There appeared to be a large amount of extracellular debris and obvious holes on the cell surface, as well as loss of cell wall and nucleoid condensation. The BioFlux system was employed to generate S. mutans biofilms under a controlled flow, which more closely resemble the formation process of natural biofilms. Bac8c remarkably reduced the viability of cells in biofilms formed in the BioFlux system. This phenomenon was further analyzed and verified by real-time PCR results of a significant suppression of the genes involved in S. mutans biofilm formation. Taken together, this study suggests that Bac8c has a potential clinical application in preventing and treating dental caries.  相似文献   

16.

Background  

Streptococcus mutans is a major pathogen in human dental caries. One of its important virulence properties is the ability to form biofilms (dental plaque) on tooth surfaces. Eradication of such biofilms is extremely difficult. We therefore screened a library of secondary metabolites from myxobacteria for their ability to damage biofilms of S. mutans.  相似文献   

17.
Intracellular polysaccharide (IPS) is accumulated by Streptococcus mutans when the bacteria are grown in excess sugar and can contribute toward the cariogenicity of S. mutans. Here we show that inactivation of the glgA gene (SMU1536), encoding a putative glycogen synthase, prevented accumulation of IPS. IPS is important for the persistence of S. mutans grown in batch culture with excess glucose and then starved of glucose. The IPS was largely used up within 1 day of glucose starvation, and yet survival of the parental strain was extended by at least 15 days beyond that of a glgA mutant; potentially, some feature of IPS metabolism distinct from providing nutrients is important for persistence. IPS was not needed for persistence when sucrose was the carbon source or when mucin was present.Streptococcus mutans is a facultative colonizer of the human dental plaque, the microbial pellicle that covers the surface of the teeth. It is the major etiological agent of dental caries (17). Sugar metabolism is central to the behavior of S. mutans (4, 7). It can use a variety of sugars. The sugars are fermented by glycolysis with production of organic acids, particularly lactic acid (4, 7). In addition to providing energy, sucrose is used to produce extracellular polysaccharides to form the biofilm matrix that aids in the association of S. mutans with the dental plaque. Once the S. mutans biofilm becomes part of the dental plaque, the acidic by-products of sugar fermentation dissolve tooth enamel, eventually resulting in dental caries (17). The presence of sugars in the dental plaque is periodic and reflects the intake of dietary sugars. If there is excess sugar available, in addition to producing organic acids and matrix, intracellular (iodophilic) polysaccharide (IPS; glycogen) is formed.The IPS of S. mutans is a polymer of the glycogen-amylopectin type, with α-(1, 4)- and α-(1, 6)-linked glucose, and is stored as intracellular granules (10). Intracellular glycogen storage reserves in various bacterial species are synthesized from glucose-1-P via ADP-glucose (1). The synthesis involves at least three enzymes: glycogen synthase, glucose-1-phosphate pyrophosphorylase, and branching enzyme. The genes encoding these enzymes are commonly found in a glg operon, although the order of genes differs between species. In two gram-positive species, Bacillus subtilis and Bacillus stearothermophilus, the gene order is glgB-glgC-glgD-glgA-glgP (15, 29): glgA encodes glycogen synthase, glgB encodes glucan branching enzyme, and glgC and glgD encode subunits of glucose-1-phosphate pyrophosphorylase. The glgP gene encodes glycogen phosphorylase, which is unlikely to be involved in glycogen synthesis (29). Genes putatively encoding similar enzymes are present in the same order in the genome of S. mutans (29); they are thought also to form an operon.The IPS can be used as a source of carbohydrate for fermentation upon nutrient depletion (11, 13). In planktonic cultures, IPS reserves are largely consumed within 12 h of the imposition of sugar starvation (11, 13, 32). In S. mutans, IPS utilization may prolong acid production and hence the period of lowered pH of the resting (between meals) plaque, a factor that contributes to the incidence of caries. Indeed, IPS is implicated in dental caries: a mutant that synthesized elevated levels of IPS was hypercariogenic in germfree rats (27). Strains isolated from human carious lesions were nearly all stable IPS producers, whereas most strains from caries-inactive persons were variable IPS producers (13, 33).Since S. mutans deep in the dental plaque may not have access to nutrients because of competition with the bacteria at the surface of the plaque, the bacteria may need to survive longer periods of nutrient starvation. Previous studies in our laboratory showed that S. mutans can survive under sugar starvation conditions, provided that the pH remains above ∼5.5 (22). The presence of spent medium and mucin significantly prolonged survival of sugar-starved biofilms and batch cultures (22; also unpublished observations). Here we examine the role of IPS.The role of IPS (glycogen) in bacterial survival has been tested for several other bacterial species. It was found to extend survival of Aerobacter aerogenes (8) and Escherichia coli (28). Intracellular glycogen was also shown to support the survival of Streptococcus mitis during stationary-phase starvation (32). In contrast, glycogen-rich Sarcina lutea died at a higher rate during starvation than did bacteria without glycogen (2).In order to test the role of IPS in S. mutans survival, we constructed an IPS-deficient mutant by inactivating glgA (GenBank SMU.1536) (http://www.oralgen.lanl.gov/), putatively encoding the glycogen synthase. We also constructed a mutant potentially altered in IPS metabolism by inactivating the putative pullulanase structural gene, pul (SMU.1541). Pullulanases are responsible for hydrolyzing α-(1,6) linkages (and in some cases 1,4 linkages) in pullulan and in other polysaccharides (35) and may be important in determining the branching in IPS and/or affecting the catabolism of IPS. We studied the persistence of bacteria under conditions of sugar limitation and of sugar excess in both batch cultures and biofilms. We found that IPS can play a role in supporting S. mutans persistence in batch cultures but found no role for IPS in survival in biofilms.  相似文献   

18.
Although Streptococcus mutans biofilms have been useful for evaluating the cariogenic potential of dietary carbohydrates and the effects of fluoride on dental demineralization, a more appropriate biofilm should be developed to demonstrate the influence of other oral bacteria on cariogenic biofilms. This study describes the development and validation of a three-species biofilm model comprising Streptococcus mutans, Actinomyces naeslundii, and Streptococcus gordonii for the evaluation of enamel and dentin demineralization after cariogenic challenges and fluoride exposure. Single- or three-species biofilms were developed on dental substrata for 96?h, and biofilms were exposed to feast and famine episodes. The three-species biofilm model produced a large biomass, mostly comprising S. mutans (41%) and S. gordonii (44%), and produced significant demineralization in the dental substrata, although enamel demineralization was decreased by fluoride treatment. The findings indicate that the three-species biofilm model may be useful for evaluating the cariogenic potential of dietary carbohydrates other than sucrose and determining the effects of fluoride on dental substrata.  相似文献   

19.
Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.  相似文献   

20.
Streptococcus mutans is a member of oral plaque biofilms and is considered the major etiological agent of dental caries. We have characterized the survival of S. mutans strain UA159 in both batch cultures and biofilms. Bacteria grown in batch cultures in a chemically defined medium, FMC, containing an excess of glucose or sucrose caused the pH to decrease to 4.0 at the entry into stationary phase, and they survived for about 3 days. Survival was extended up to 11 days when the medium contained a limiting concentration of glucose or sucrose that was depleted by the time the bacteria reached stationary phase. Sugar-limited cultures maintained a pH of 7.0 throughout stationary phase. Their survival was shortened to 3 days by the addition of exogenous lactic acid at the entry into stationary phase. Sugar starvation did not lead to comparable survival in biofilms. Although the pH remained at 7.0, bacteria could no longer be cultured from biofilms 4 days after the imposition of glucose or sucrose starvation; BacLight staining results did not agree with survival results based on culturability. In both batch cultures and biofilms, survival could be extended by the addition of 0.5% mucin to the medium. Batch survival increased to an average of 26 (±8) days, and an average of 2.7 × 105 CFU per chamber were still present in biofilms that were starved of sucrose for 12 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号